期刊文献+
共找到2,438篇文章
< 1 2 122 >
每页显示 20 50 100
基于EA-RL算法的分布式能源集群调度方法
1
作者 程小华 王泽夫 +2 位作者 曾君 曾婧瑶 谭豪杰 《华南理工大学学报(自然科学版)》 北大核心 2025年第1期1-9,共9页
目前对于分布式能源集群调度的研究大多局限于单一场景,同时也缺少高效、准确的算法。该文针对以上问题提出了一种基于进化算法经验指导的深度强化学习(EA-RL)的分布式能源集群多场景调度方法。分别对分布式能源集群中的电源、储能、负... 目前对于分布式能源集群调度的研究大多局限于单一场景,同时也缺少高效、准确的算法。该文针对以上问题提出了一种基于进化算法经验指导的深度强化学习(EA-RL)的分布式能源集群多场景调度方法。分别对分布式能源集群中的电源、储能、负荷进行个体建模,并基于个体调度模型建立了包含辅助调峰调频的多场景分布式能源集群优化调度模型;基于进化强化学习算法框架,提出了一种EA-RL算法,该算法融合了遗传算法(GA)与深度确定性策略梯度(DDPG)算法,以经验序列作为遗传算法个体进行交叉、变异、选择,筛选出优质经验加入DDPG算法经验池对智能体进行指导训练以提高算法的搜索效率和收敛性;根据多场景调度模型构建分布式能源集群多场景调度问题的状态空间和动作空间,再以最小化调度成本、最小化辅助服务调度指令偏差、最小化联络线越限功率以及最小化源荷功率差构建奖励函数,完成强化学习模型的建立;为验证所提算法模型的有效性,基于多场景的仿真算例对调度智能体进行离线训练,形成能够适应电网多场景的调度智能体,通过在线决策的方式进行验证,根据决策结果评估其调度决策能力,并通过与DDPG算法的对比验证算法的有效性,最后对训练完成的智能体进行了连续60d的加入不同程度扰动的在线决策测试,验证智能体的后效性和鲁棒性。 展开更多
关键词 分布式能源集群 深度强化学习 进化强化学习算法 多场景一体化调度
在线阅读 下载PDF
基于Hotelling模型的电商平台包装策略演化博弈研究
2
作者 何波 张瀚文 +1 位作者 王林玉 程胜 《包装工程》 北大核心 2025年第13期280-288,共9页
目的剖析出电商平台在采纳可循环包装策略过程中的博弈关系,揭示其策略选择的演化机制与路径,为推动包装绿色化和可持续发展提供有用参考。方法基于Hotelling模型,提出4种包装策略组合情景,并构建2个寡头电商平台与政府之间的三方演化... 目的剖析出电商平台在采纳可循环包装策略过程中的博弈关系,揭示其策略选择的演化机制与路径,为推动包装绿色化和可持续发展提供有用参考。方法基于Hotelling模型,提出4种包装策略组合情景,并构建2个寡头电商平台与政府之间的三方演化博弈模型,模拟各方在演化过程中的动态行为。运用Matlab软件进行数值仿真分析,探究关键影响因素对双寡头电商平台演化路径的影响。结果博弈系统的最终稳定状态受到可循环包装所需投入的固定成本、市场竞争强度和政府奖惩力度等因素的显著影响。在不同参数区间下,系统会呈现多种演化稳定均衡。结论电商平台通过优化运营体系及标准化管理,可以降低可循环包装的实施成本,从而提升整体净收益。政府通过合理有效的奖惩政策,并结合市场调控手段,可以激发电商平台采用可循环包装的积极性,加速可循环包装的推广应用,实现经济效益与环境效益的双赢。 展开更多
关键词 电商平台 包装策略 可循环包装 HOTeLLING模型 演化博弈 政府奖惩
在线阅读 下载PDF
应用精确Zoeppritz方程的叠前PP-PS波联合非线性反演方法
3
作者 杨涛 王鹏起 +3 位作者 李庆春 霍科宇 李伟 何煦鹍 《石油地球物理勘探》 北大核心 2025年第1期152-162,203,共12页
叠前AVO反演是获取地层物性参数的重要手段,传统的叠前AVO反演方法多基于近似反射系数方程,往往在特定的地质环境或大入射角情况下精度较低。为克服这些不足,文中提出了一种基于精确Zoeppritz方程的叠前PP-PS波联合非线性反演方法。该... 叠前AVO反演是获取地层物性参数的重要手段,传统的叠前AVO反演方法多基于近似反射系数方程,往往在特定的地质环境或大入射角情况下精度较低。为克服这些不足,文中提出了一种基于精确Zoeppritz方程的叠前PP-PS波联合非线性反演方法。该方法将多目标的全局优化算法与纵横波联合反演相结合,可同时对PP和PS波两个目标函数进行优化,从而实现完全非线性参数反演。为解决传统PP-PS波联合反演中PS波地震资料权重系数给定困难的问题,在贝叶斯框架下建立了PP-PS波联合反演的多目标函数,并引入多目标智能优化算法——SPEA2求解构建的反演多目标函数。单井合成地震记录、Marmousi模型合成地震记录以及实际地震数据的测试结果表明,该叠前PP-PS波联合非线性反演方法能够高精度地估计地层的弹性参数,在处理复杂地层和大入射角地震数据时反演效果优于传统的AVO反演方法。 展开更多
关键词 精确Zoeppritz 方程 叠前AVO 反演 SPeA2(Strength Pareto evolutionary algorithm 2) PP-PS 波联合 反演 贝叶斯框架
在线阅读 下载PDF
Solving material distribution routing problem in mixed manufacturing systems with a hybrid multi-objective evolutionary algorithm 被引量:7
4
作者 高贵兵 张国军 +2 位作者 黄刚 朱海平 顾佩华 《Journal of Central South University》 SCIE EI CAS 2012年第2期433-442,共10页
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency... The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II. 展开更多
关键词 material distribution routing problem multi-objective optimization evolutionary algorithm local search
在线阅读 下载PDF
Multiobjective evolutionary algorithm for dynamic nonlinear constrained optimization problems 被引量:2
5
作者 Liu Chun'an Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期204-210,共7页
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th... A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP. 展开更多
关键词 dynamic optimization nonlinear constrained optimization evolutionary algorithm optimal solutions
在线阅读 下载PDF
Optimal setting and placement of FACTS devices using strength Pareto multi-objective evolutionary algorithm 被引量:2
6
作者 Amin Safari Hossein Shayeghi Mojtaba Bagheri 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期829-839,共11页
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for... This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems. 展开更多
关键词 STReNGTH PAReTO multi-objective evolutionary algorithm STATIC var COMPeNSATOR (SVC) THYRISTOR controlled series capacitor (TCSC) STATIC voltage stability margin optimal location
在线阅读 下载PDF
Immune evolutionary algorithms with domain knowledge for simultaneous localization and mapping 被引量:4
7
作者 李枚毅 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第5期529-535,共7页
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de... Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms. 展开更多
关键词 immune evolutionary algorithms simultaneous localization and mapping domain knowledge
在线阅读 下载PDF
Enhanced self-adaptive evolutionary algorithm for numerical optimization 被引量:1
8
作者 Yu Xue YiZhuang +2 位作者 Tianquan Ni Jian Ouyang ZhouWang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期921-928,共8页
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se... There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors. 展开更多
关键词 SeLF-ADAPTIVe numerical optimization evolutionary al-gorithm stochastic search algorithm.
在线阅读 下载PDF
A new improved Alopex-based evolutionary algorithm and its application to parameter estimation 被引量:1
9
作者 桑志祥 李绍军 董跃华 《Journal of Central South University》 SCIE EI CAS 2013年第1期123-133,共11页
In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irratio... In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves. 展开更多
关键词 ALOPeX evolutionary algorithm Alopex-based evolutionary algorithm clone selection parameter estimation
在线阅读 下载PDF
Modified evolutionary algorithm for global optimization 被引量:1
10
作者 郭崇慧 陆玉昌 唐焕文 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第1期1-6,共6页
A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorith... A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorithm which includes two phases is that chaotic behavior is exploited to conduct a rough search of the problem space in order to find the promising individuals in Phase I. Adjustment strategy of steplength and intensive searches in Phase II are employed. The population sequences generated by the algorithm asymptotically converge to global optimal solutions with probability one. The proposed algorithm is applied to several typical test problems. Numerical results illustrate that this algorithm can more efficiently solve complex global optimization problems than evolutionary programming and evolution strategies in most cases. 展开更多
关键词 global optimization evolutionary algorithms chaos search
在线阅读 下载PDF
Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization 被引量:1
11
作者 GAO Wei-Shang SHAO Cheng 《自动化学报》 EI CSCD 北大核心 2014年第11期2469-2479,共11页
Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence reg... Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence regions.In this paper,we propose an iterative dynamic diversity evolutionary algorithm(IDDEA)with contractive subregions guiding exploitation through local extrema to the global optimum in suitable steps.In IDDEA,a novel optimum estimation strategy with multi-agents evolving diversely is suggested to e?ciently compute dominance trend and establish a subregion.In addition,a subregion converging iteration is designed to redistrict a smaller subregion in current subregion for next iteration,which is based on a special dominance estimation scheme.Meanwhile,an infimum penalty function is embedded into IDDEA to judge agents and penalize adaptively the unfeasible agents with the lowest fitness of feasible agents.Furthermore,several engineering design optimization problems taken from the specialized literature are successfully solved by the present algorithm with high reliable solutions. 展开更多
关键词 Constrained optimization evolutionary algorithm MULTI-AGeNTS swarm intelligence
在线阅读 下载PDF
基于改进E-DWT算法和深度学习模型的红小豆锈病诊断方法
12
作者 付强 关海鸥 李嘉琪 《光谱学与光谱分析》 北大核心 2025年第9期2648-2657,共10页
红小豆锈病是一种由真菌引起的常见植物病害,主要通过感染叶片影响光合作用,导致作物产量显著下降。本文提出了一种基于改进经验模态分解-小波变换(E-DWT)算法和深度学习模型的新型红小豆锈病诊断方法。选用“宝清红”红小豆作为实验对... 红小豆锈病是一种由真菌引起的常见植物病害,主要通过感染叶片影响光合作用,导致作物产量显著下降。本文提出了一种基于改进经验模态分解-小波变换(E-DWT)算法和深度学习模型的新型红小豆锈病诊断方法。选用“宝清红”红小豆作为实验对象,使用手持可见/近红外光谱仪对960例红小豆叶片进行为期10天的连续光谱数据采集,获取波长范围为326~1075 nm的红小豆叶片反射率数据。首先,采用改进的E-DWT算法对采集的光谱数据进行去噪处理。该算法结合了经验模态分解(EMD)和小波阈值去噪技术,能够在去除噪声的同时最大限度保留信号的有效信息。通过对比RMSE和SNR指标确定了最佳的小波基函数(sym5)和分解层数(4层)。为了进一步降低高维数据中的冗余信息,采用连续投影算法(SPA)从750个初始波长中筛选出了12个具有代表性的特征波长,实现了数据降维,将特征波长数量减少了98.4%。接着,结合格拉姆角场(GAF)方法,将一维波长序列转换为二维光谱图像,增强了不同波段之间的相关性,便于后续的模型训练。在模型设计上,采用了结合卷积神经网络(CNN)和卷积块注意力机制(CBAM)的深度学习模型。CBAM模块通过引入通道和空间注意力机制,能够有效区分光谱数据中不同特征波长和时间节点的权重,使模型更加关注影响红小豆锈病识别的关键特征。实验结果表明,基于CBAM的CNN模型在训练集中的识别率为99.31%,而在测试集中的识别率为98.33%,召回率达到98.89%,明显高于传统CNN模型的表现。与现有的其他方法相比,本文提出的模型在识别准确性、稳定性以及训练收敛速度上均具有显著优势。总体而言,本文所提出的基于改进E-DWT算法与CBAM-CNN模型的红小豆锈病诊断方法,不仅实现了高效、精准的病害检测,还为未来数据驱动型作物病害诊断系统的构建提供了理论依据与技术支持。 展开更多
关键词 红小豆锈病 光谱数据处理 e-DWT算法 深度学习模型 诊断模型
在线阅读 下载PDF
反硝化生物滤池深度脱氮效能预测EGA-BPNN模型构建
13
作者 陶健 姜芳媛 石先阳 《生物学杂志》 北大核心 2025年第3期15-21,28,共8页
为准确预估不同外碳源和C/N条件下反硝化生物滤池(DNBF)的深度脱氮效能,基于支持向量回归(SVR)和BP神经网络(BPNN)建立DNBF深度脱氮预测模型,并结合进化算法进行模型优化。通过DNBF实验数据进行模型训练和泛化能力验证,并根据性能评价... 为准确预估不同外碳源和C/N条件下反硝化生物滤池(DNBF)的深度脱氮效能,基于支持向量回归(SVR)和BP神经网络(BPNN)建立DNBF深度脱氮预测模型,并结合进化算法进行模型优化。通过DNBF实验数据进行模型训练和泛化能力验证,并根据性能评价指标确定最优预测模型。结果表明:SVR(R^(2)=0.904)对TN去除率的预测性能优于BPNN(R^(2)=0.876),经进化算法优化后的差分进化算法(DE)-SVR、精英保留的遗传算法(EGA)-BPNN对比SVR、BPNN,R^(2)分别提升了1.5%、11.5%,EGA-BPNN对TN去除率、NO_(2)^(-)-N质量浓度、NO_(3)^(-)-N质量浓度预测的R^(2)分别为0.991、0.971、0.926,均显著优于其他模型,表明利用进化算法同步优化神经网络结构和模型参数,有效提升了模型的性能;EGA-BPNN对沿程脱氮指标TN、NO_(2)^(-)-N、NO_(3)^(-)-N和COD质量浓度预测的R^(2)分别为0.969、0.980、0.974、0.864,进一步验证了该模型具有较好的泛化能力,能有效预测不同外碳源投加策略下的DNBF脱氮效能。 展开更多
关键词 反硝化生物滤池 外碳源 支持向量回归 BP神经网络 进化算法
在线阅读 下载PDF
Web mining based on chaotic social evolutionary programming algorithm
14
作者 Xie Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第6期1272-1276,共5页
With an aim to the fact that the K-means clustering algorithm usually ends in local optimization and is hard to harvest global optimization, a new web clustering method is presented based on the chaotic social evoluti... With an aim to the fact that the K-means clustering algorithm usually ends in local optimization and is hard to harvest global optimization, a new web clustering method is presented based on the chaotic social evolutionary programming (CSEP) algorithm. This method brings up the manner of that a cognitive agent inherits a paradigm in clustering to enable the cognitive agent to acquire a chaotic mutation operator in the betrayal. As proven in the experiment, this method can not only effectively increase web clustering efficiency, but it can also practically improve the precision of web clustering. 展开更多
关键词 web clustering chaotic social evolutionary programming K-means algorithm
在线阅读 下载PDF
Resilient multi-objective mission planning for UAV formation:A unified framework integrating task pre-and re-assignment
15
作者 Xinwei Wang Xiaohua Gao +4 位作者 Lei Wang Xichao Su Junhong Jin Xuanbo Liu Zhilong Deng 《Defence Technology(防务技术)》 2025年第3期203-226,共24页
Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed o... Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration. 展开更多
关键词 Cooperative mission planning UAV formation Mission reliability evolutionary algorithm Contract net protocol
在线阅读 下载PDF
基于BES的线阵相机快速现场动态标定方法
16
作者 黄鹏 刘程浩 +2 位作者 蔡露 周益航 易冬旺 《计算机集成制造系统》 北大核心 2025年第9期3255-3264,共10页
为了实现工业现场中的高精度、低成本、快速标定,结合某视觉测量系统实际需求,提出了一种基于秃鹰搜索算法(BES)的线阵相机标定方法。该方法以二维棋盘格作为标定物,利用输送带运动获取特征点信息。为获得标定参数初值,首先通过初步标... 为了实现工业现场中的高精度、低成本、快速标定,结合某视觉测量系统实际需求,提出了一种基于秃鹰搜索算法(BES)的线阵相机标定方法。该方法以二维棋盘格作为标定物,利用输送带运动获取特征点信息。为获得标定参数初值,首先通过初步标定缩小像元阵列方向与运动方向间的夹角,以便于对成像模型进行合理简化,然后利用Drareni法估计标定参数初值。基于此,将运动向量添加到标定参数中,并应用BES算法计算得到标定参数精确值,从而避免了Drareni法对于像元阵列方向严格垂直于运动方向的限定,且无需其他辅助设备。实验结果表明,该方法在像元阵列方向与运动方向不垂直时仍能有效标定,重投影均方根误差为0.294 pixel,标定精度更高且便于应用,能够满足工业视觉测量系统的标定精度要求。 展开更多
关键词 线阵相机 相机标定 参数轮换法 进化算法 工业现场
在线阅读 下载PDF
EG-DPoS:基于演化博弈的DPoS优化共识算法
17
作者 刘勇 邓小鸿 +2 位作者 刘力汇 石亦燃 张丽 《计算机科学与探索》 北大核心 2025年第5期1379-1394,共16页
针对委托权益证明算法(DPoS)共识过程中,投票节点积极性不高、恶意节点贿赂拉票和代理节点按序出块易被攻击的问题,提出了一种基于演化博弈的DPoS优化共识算法(EG-DPoS)。引入信用机制构建节点投票激励模型,根据节点的投票情况给予信用... 针对委托权益证明算法(DPoS)共识过程中,投票节点积极性不高、恶意节点贿赂拉票和代理节点按序出块易被攻击的问题,提出了一种基于演化博弈的DPoS优化共识算法(EG-DPoS)。引入信用机制构建节点投票激励模型,根据节点的投票情况给予信用值奖励,有效提高了节点的投票积极性;基于演化博弈的策略制定了一种行为奖惩机制,对投票选举阶段各节点的不同行为策略预设对应的收益函数并实施奖惩,以此来遏制恶意节点的贿赂合谋行为,保证了系统的稳定性和公平性;平衡代理节点选举过程中信用值和投票权重的比例系数,以减少高信用值节点造成的寡头现象,同时利用轮盘选择算法打乱代理节点的出块顺序,避免节点在出块过程中被攻击,提高了系统的安全性。仿真实验结果表明,与DPoS算法相比,EG-DPoS的平均时延降低了36.83%,平均吞吐量提高了19.44%,且参与投票的节点数与总节点数的比值提升约42%。这是由于EG-DPoS中存在投票激励机制和设定了固定的投票时间,以及在演化博弈策略的作用下,节点会随系统的运行表现得更加安全高效,使得代理节点的出块效率和共识效率更高,因此能在降低时延的同时提升吞吐量和投票节点的积极性,并且与其他典型DPoS改进算法相比,EGDPoS也具有明显的性能优势。 展开更多
关键词 演化博弈 委托权益证明(DPoS) 共识算法 区块链 信用激励
在线阅读 下载PDF
基于MODE算法的光伏逆变器机电暂态模型LVRT控制方式与控制参数辨识研究
18
作者 徐恒山 王思维 +2 位作者 张旭军 李晨阳 黄永章 《太阳能学报》 北大核心 2025年第11期308-318,共11页
针对光伏逆变器低电压穿越(LVRT)控制方式及参数难以获取,导致建立精确仿真模型、分析并网特性受限的问题,提出一种基于多目标差分进化(MODE)算法的光伏逆变器机电暂态模型控制方式与参数辨识方法。首先,基于RT-LAB实时仿真平台进行光... 针对光伏逆变器低电压穿越(LVRT)控制方式及参数难以获取,导致建立精确仿真模型、分析并网特性受限的问题,提出一种基于多目标差分进化(MODE)算法的光伏逆变器机电暂态模型控制方式与参数辨识方法。首先,基于RT-LAB实时仿真平台进行光伏控制器半实物LVRT测试,获取参数辨识所需工况数据;其次,提取工况关键点建立辨识数据集,采用MODE算法分别辨识出逆变器在指定功率和指定电流方式下的控制参数,并引入自适应调参策略和非支配排序法改进算法性能;最后,对比LVRT工况在不同控制方式下的仿真效果以确定逆变器控制方式。结果表明,所提方法能准确辨识逆变器机电暂态模型的控制方式与参数。 展开更多
关键词 光伏发电 参数辨识 逆变器 进化算法 多目标优化 低电压穿越
在线阅读 下载PDF
基于MLR-DE-LSTM的大坝变形串联组合预测模型
19
作者 刘天翼 艾星星 张九丹 《中国农村水利水电》 北大核心 2025年第2期207-212,共6页
为了解决单一模型在大坝变形预测中可能带来的信息损失问题,将差分进化算法(DE)用于长短期记忆神经网络(LSTM)模型的参数优化,并结合多元线性回归(MLR)模型建立MLR-DE-LSTM串联组合模型。基于某重力坝的水平位移原型监测数据,对该模型... 为了解决单一模型在大坝变形预测中可能带来的信息损失问题,将差分进化算法(DE)用于长短期记忆神经网络(LSTM)模型的参数优化,并结合多元线性回归(MLR)模型建立MLR-DE-LSTM串联组合模型。基于某重力坝的水平位移原型监测数据,对该模型进行了验证。结果表明,DE算法可以有效提高LSTM模型的预测精度,LSTM模型可以有效挖掘MLR模型尚未完全解释的信息。相较于单一模型,组合模型在预测位移数据时具有更高的准确度和稳定性,组合模型在充分利用数据信息方面具有更大优势。研究结果为提高大坝变形预测精度提供了参考价值。 展开更多
关键词 大坝变形 差分进化算法 长短期记忆神经网络 多元线性回归 组合模型
在线阅读 下载PDF
基于HEOA-XGBoost组合模型的边坡稳定性预测
20
作者 祁云 白晨浩 +3 位作者 秦凯 段宏飞 李绪萍 汪伟 《中国安全科学学报》 北大核心 2025年第9期137-144,共8页
为预防边坡失稳安全事故发生,针对边坡失稳的不确定性及影响因素的复杂性等问题,提出一种基于人类进化优化算法(HEOA)优化极端梯度提升(XGBoost)的组合模型,以预测边坡稳定性。首先分析影响边坡失稳的主控因素,选取边坡岩体的6项影响因... 为预防边坡失稳安全事故发生,针对边坡失稳的不确定性及影响因素的复杂性等问题,提出一种基于人类进化优化算法(HEOA)优化极端梯度提升(XGBoost)的组合模型,以预测边坡稳定性。首先分析影响边坡失稳的主控因素,选取边坡岩体的6项影响因素建立边坡稳定性预测指标体系;其次利用极差标准化统一样本量纲,并采用合成少数类过采样技术(SMOTE)平衡样本等级分布;然后通过HEOA优化XGBoost模型的最大深度、学习率、子样本比例、列样本比例和最小损失;最后利用准确率、精确率、召回率、F_(1)分数和科恩卡帕系数综合评价所建模型的预测结果,并将该模型应用于具体工程实例。结果表明:经HEOA优化后XGBoost模型的最大深度、学习率、子样本比例、列样本比例和最小损失分别为6、0.5838、0.4615、0.5846和0.0244时效果凸显;HEOA-XGBoost组合模型预测边坡稳定性状态相比于其他智能算法优化的XGBoost模型和单一XGBoost模型,其各评价指标均有所提升,表明该模型预测边坡稳定性状态具有较高的精准度和泛化性。 展开更多
关键词 边坡稳定性 人类进化优化算法(HeOA) 极端梯度提升(XGBoost) 极差标准化 合成少数类过采样技术(SMOTe)
在线阅读 下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部