期刊文献+
共找到2,204篇文章
< 1 2 111 >
每页显示 20 50 100
Multiobjective evolutionary algorithm for dynamic nonlinear constrained optimization problems 被引量:2
1
作者 Liu Chun'an Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期204-210,共7页
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th... A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP. 展开更多
关键词 dynamic optimization nonlinear constrained optimization evolutionary algorithm optimal solutions
在线阅读 下载PDF
基于EA-RL算法的分布式能源集群调度方法
2
作者 程小华 王泽夫 +2 位作者 曾君 曾婧瑶 谭豪杰 《华南理工大学学报(自然科学版)》 北大核心 2025年第1期1-9,共9页
目前对于分布式能源集群调度的研究大多局限于单一场景,同时也缺少高效、准确的算法。该文针对以上问题提出了一种基于进化算法经验指导的深度强化学习(EA-RL)的分布式能源集群多场景调度方法。分别对分布式能源集群中的电源、储能、负... 目前对于分布式能源集群调度的研究大多局限于单一场景,同时也缺少高效、准确的算法。该文针对以上问题提出了一种基于进化算法经验指导的深度强化学习(EA-RL)的分布式能源集群多场景调度方法。分别对分布式能源集群中的电源、储能、负荷进行个体建模,并基于个体调度模型建立了包含辅助调峰调频的多场景分布式能源集群优化调度模型;基于进化强化学习算法框架,提出了一种EA-RL算法,该算法融合了遗传算法(GA)与深度确定性策略梯度(DDPG)算法,以经验序列作为遗传算法个体进行交叉、变异、选择,筛选出优质经验加入DDPG算法经验池对智能体进行指导训练以提高算法的搜索效率和收敛性;根据多场景调度模型构建分布式能源集群多场景调度问题的状态空间和动作空间,再以最小化调度成本、最小化辅助服务调度指令偏差、最小化联络线越限功率以及最小化源荷功率差构建奖励函数,完成强化学习模型的建立;为验证所提算法模型的有效性,基于多场景的仿真算例对调度智能体进行离线训练,形成能够适应电网多场景的调度智能体,通过在线决策的方式进行验证,根据决策结果评估其调度决策能力,并通过与DDPG算法的对比验证算法的有效性,最后对训练完成的智能体进行了连续60d的加入不同程度扰动的在线决策测试,验证智能体的后效性和鲁棒性。 展开更多
关键词 分布式能源集群 深度强化学习 进化强化学习算法 多场景一体化调度
在线阅读 下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
3
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm ea improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
Solving material distribution routing problem in mixed manufacturing systems with a hybrid multi-objective evolutionary algorithm 被引量:7
4
作者 高贵兵 张国军 +2 位作者 黄刚 朱海平 顾佩华 《Journal of Central South University》 SCIE EI CAS 2012年第2期433-442,共10页
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency... The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II. 展开更多
关键词 material distribution routing problem multi-objective optimization evolutionary algorithm local search
在线阅读 下载PDF
Optimal setting and placement of FACTS devices using strength Pareto multi-objective evolutionary algorithm 被引量:2
5
作者 Amin Safari Hossein Shayeghi Mojtaba Bagheri 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期829-839,共11页
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for... This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems. 展开更多
关键词 STRENGTH PARETO multi-objective evolutionary algorithm STATIC var COMPENSATOR (SVC) THYRISTOR controlled series capacitor (TCSC) STATIC voltage stability margin optimal location
在线阅读 下载PDF
Adaptive backtracking search optimization algorithm with pattern search for numerical optimization 被引量:6
6
作者 Shu Wang Xinyu Da +1 位作者 Mudong Li Tong Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期395-406,共12页
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe... The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm. 展开更多
关键词 evolutionary algorithm backtracking search optimization algorithm(BSA) Hooke-Jeeves pattern search parameter adaption numerical optimization
在线阅读 下载PDF
Immune evolutionary algorithms with domain knowledge for simultaneous localization and mapping 被引量:4
7
作者 李枚毅 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第5期529-535,共7页
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de... Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms. 展开更多
关键词 immune evolutionary algorithms simultaneous localization and mapping domain knowledge
在线阅读 下载PDF
Enhanced self-adaptive evolutionary algorithm for numerical optimization 被引量:1
8
作者 Yu Xue YiZhuang +2 位作者 Tianquan Ni Jian Ouyang ZhouWang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期921-928,共8页
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se... There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors. 展开更多
关键词 SELF-ADAPTIVE numerical optimization evolutionary al-gorithm stochastic search algorithm.
在线阅读 下载PDF
A new improved Alopex-based evolutionary algorithm and its application to parameter estimation 被引量:1
9
作者 桑志祥 李绍军 董跃华 《Journal of Central South University》 SCIE EI CAS 2013年第1期123-133,共11页
In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irratio... In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves. 展开更多
关键词 ALOPEX evolutionary algorithm Alopex-based evolutionary algorithm clone selection parameter estimation
在线阅读 下载PDF
Modified evolutionary algorithm for global optimization 被引量:1
10
作者 郭崇慧 陆玉昌 唐焕文 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第1期1-6,共6页
A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorith... A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorithm which includes two phases is that chaotic behavior is exploited to conduct a rough search of the problem space in order to find the promising individuals in Phase I. Adjustment strategy of steplength and intensive searches in Phase II are employed. The population sequences generated by the algorithm asymptotically converge to global optimal solutions with probability one. The proposed algorithm is applied to several typical test problems. Numerical results illustrate that this algorithm can more efficiently solve complex global optimization problems than evolutionary programming and evolution strategies in most cases. 展开更多
关键词 global optimization evolutionary algorithms chaos search
在线阅读 下载PDF
Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization 被引量:1
11
作者 GAO Wei-Shang SHAO Cheng 《自动化学报》 EI CSCD 北大核心 2014年第11期2469-2479,共11页
Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence reg... Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence regions.In this paper,we propose an iterative dynamic diversity evolutionary algorithm(IDDEA)with contractive subregions guiding exploitation through local extrema to the global optimum in suitable steps.In IDDEA,a novel optimum estimation strategy with multi-agents evolving diversely is suggested to e?ciently compute dominance trend and establish a subregion.In addition,a subregion converging iteration is designed to redistrict a smaller subregion in current subregion for next iteration,which is based on a special dominance estimation scheme.Meanwhile,an infimum penalty function is embedded into IDDEA to judge agents and penalize adaptively the unfeasible agents with the lowest fitness of feasible agents.Furthermore,several engineering design optimization problems taken from the specialized literature are successfully solved by the present algorithm with high reliable solutions. 展开更多
关键词 Constrained optimization evolutionary algorithm MULTI-AGENTS swarm intelligence
在线阅读 下载PDF
Self-adaptive learning based immune algorithm 被引量:1
12
作者 许斌 庄毅 +1 位作者 薛羽 王洲 《Journal of Central South University》 SCIE EI CAS 2012年第4期1021-1031,共11页
A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned prc,blems with the high robustness. The SALIA algorithm ad... A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned prc,blems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to generate new antibodies. A self-adaptive learning framework is implemented to select the mutation strategies by learning from their previous performances in generating promising solutions. Twenty-six state-of-the-art optimization problems with different characteristics, such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise, are used to verify the validity of SALIA. Experimental results show that the novel algorithm SALIA achieves a higher universality and robustness than clonal selection algorithms (CLONALG), and the mean error index of each test function in SALIA decreases by a factor of at least 1.0×10^7 in average. 展开更多
关键词 immune algorithm multi-modal optimization evolutionary computation immtme secondary response self-adaptivelearning
在线阅读 下载PDF
A ε-indicator-based shuffled frog leaping algorithm for many-objective optimization problems
13
作者 WANG Na SU Yuchao +2 位作者 CHEN Xiaohong LI Xia LIU Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期142-155,共14页
Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issu... Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors. 展开更多
关键词 evolutionary algorithm many-objective optimization shuffled frog leaping algorithm(SFLA) ε-indicator
在线阅读 下载PDF
Web mining based on chaotic social evolutionary programming algorithm
14
作者 Xie Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第6期1272-1276,共5页
With an aim to the fact that the K-means clustering algorithm usually ends in local optimization and is hard to harvest global optimization, a new web clustering method is presented based on the chaotic social evoluti... With an aim to the fact that the K-means clustering algorithm usually ends in local optimization and is hard to harvest global optimization, a new web clustering method is presented based on the chaotic social evolutionary programming (CSEP) algorithm. This method brings up the manner of that a cognitive agent inherits a paradigm in clustering to enable the cognitive agent to acquire a chaotic mutation operator in the betrayal. As proven in the experiment, this method can not only effectively increase web clustering efficiency, but it can also practically improve the precision of web clustering. 展开更多
关键词 web clustering chaotic social evolutionary programming K-means algorithm
在线阅读 下载PDF
一种基于正态分布交叉的ε-MOEA 被引量:33
15
作者 张敏 罗文坚 王煦法 《软件学报》 EI CSCD 北大核心 2009年第2期305-314,共10页
实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX... 实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX)算子.首先在一维搜索空间实例中对NDX与SBX算子进行比较和分析,然后将NDX算子应用于Deb等人提出的稳态多目标进化算法ε-MOEA(ε-dominance based multiobjective evolutionary algorithm)中.采用NDX算子的ε-MOEA(记为ε-MOEA/NDX)算法在多目标优化标准测试集ZDT和DTLZ的10个函数上进行了实验比较.实验结果和分析表明,采用NDX的ε-MOEA所求得的Pareto最优解集质量明显优于经典算法ε-MOEA/SBX和NSGA-Ⅱ. 展开更多
关键词 进化多目标优化 ε-MOea(ε-dominance BASED MULTIOBJECTIVE evolutionary algorithm) 正态分布交叉 模拟二进制交叉
在线阅读 下载PDF
基于MEA-BP神经网络的大米水分含量高光谱技术检测 被引量:25
16
作者 孙俊 唐凯 +3 位作者 毛罕平 张晓东 武小红 高洪燕 《食品科学》 EI CAS CSCD 北大核心 2017年第10期272-276,共5页
利用高光谱技术对储藏大米的水分含量进行检测。本实验以120个大米样本为研究对象,采集所有大米样本的高光谱图像,利用多元散射校正的预处理方法对大米样本原始光谱数据进行降噪处理。由于原始高光谱数据量大且冗余性强,故利用逐步线性... 利用高光谱技术对储藏大米的水分含量进行检测。本实验以120个大米样本为研究对象,采集所有大米样本的高光谱图像,利用多元散射校正的预处理方法对大米样本原始光谱数据进行降噪处理。由于原始高光谱数据量大且冗余性强,故利用逐步线性回归分析方法对预处理后的数据进行特征提取。最后建立BP神经网络的大米水分定量检测模型,由于建模效果没有达到预期目标,因此引入遗传算法(genetic algorithm,GA)和思维进化算法(mind evolutionary algorithm,MEA)优化BP神经网络的权值和阈值。对BP、GA-BP、MEA-BP 3种大米水分预测模型进行比较,3种模型的预测集决定系数都达到0.86以上,其中MEA-BP模型具有最佳的预测效果,预测集决定系数达到0.966 3,且均方根误差为0.81%。 展开更多
关键词 高光谱 大米 水分含量 BP神经网络 遗传算法 思维进化算法
在线阅读 下载PDF
一种MOEA分布度的逐步评价方法 被引量:10
17
作者 李密青 郑金华 +2 位作者 谢炯亮 杨平 李晶 《电子学报》 EI CAS CSCD 北大核心 2008年第10期1986-1991,共6页
提出了一种多目标进化算法中解集分布度逐步评价方法.定义了一种基于角度的坐标,避免了算法因收敛性不同对分布性评价的影响;利用了解集均匀分布具有的对称性,把整个目标空间从大到小划分成不同的对称区域,逐步进行分布度评价.实验结果... 提出了一种多目标进化算法中解集分布度逐步评价方法.定义了一种基于角度的坐标,避免了算法因收敛性不同对分布性评价的影响;利用了解集均匀分布具有的对称性,把整个目标空间从大到小划分成不同的对称区域,逐步进行分布度评价.实验结果表明,该方法能精确的评价解集的分布情况. 展开更多
关键词 多目标进化算法 分布度评价 逐步评价
在线阅读 下载PDF
MEA优化BP神经网络的电主轴热误差分析研究 被引量:12
18
作者 谢杰 黄筱调 +2 位作者 方成刚 张虎 周宝仓 《组合机床与自动化加工技术》 北大核心 2017年第6期1-4,共4页
针对磨齿机在磨削加工时,电主轴存在热致误差等问题,提出一种基于思维进化算法(MEA)优化BP神经网络建立磨齿机电主轴热误差预测模型的方法。通过测量磨齿机电主轴在加工过程中的温升与位移情况,利用思维进化算法优化BP神经网络算法在MAT... 针对磨齿机在磨削加工时,电主轴存在热致误差等问题,提出一种基于思维进化算法(MEA)优化BP神经网络建立磨齿机电主轴热误差预测模型的方法。通过测量磨齿机电主轴在加工过程中的温升与位移情况,利用思维进化算法优化BP神经网络算法在MATLAB软件中建立预测模型,并与未经过算法优化的BP神经网络建立的模型进行了对比。在电主轴X向热误差预测实验中,未经过算法优化的BP模型最低补偿率为84.85%,而经过思维进化算法优化BP模型最低补偿率为95.29%。结果表明:经过思维进化算法优化BP神经网络建立的热误差模型,在拟合和预测精度上要优于未经过算法优化的BP神经网络热误差模型。 展开更多
关键词 热误差 电主轴 思维进化算法 BP神经网络
在线阅读 下载PDF
基于多目标进化算法混合框架的MOEA/D算法 被引量:7
19
作者 田红军 汪镭 吴启迪 《系统仿真学报》 CAS CSCD 北大核心 2020年第2期201-216,共16页
针对混合多目标进化算法中如何设计全局搜索算法和局部搜索策略结合机制的难点问题以及提高多目标进化算法的求解性能,基于反馈控制思想,提出了一种系统化、模块化的全局优化与局部搜索相结合的混合MOEA/D算法,算法中设计了一种基于拥... 针对混合多目标进化算法中如何设计全局搜索算法和局部搜索策略结合机制的难点问题以及提高多目标进化算法的求解性能,基于反馈控制思想,提出了一种系统化、模块化的全局优化与局部搜索相结合的混合MOEA/D算法,算法中设计了一种基于拥挤熵的种群多样性度量方法;提出了基于简化二次逼近的局部搜索策略,以及针对MOEA/D的种群多样性增强策略。数值实验表明所提算法具有良好性能,可以兼顾算法求解的多样性和收敛性,所提混合框架可有效提升现有多目标进化算法的求解性能。 展开更多
关键词 多目标优化 进化算法 混合框架 MOea/D 反馈控制
在线阅读 下载PDF
IEA-PNN模型在水质预测中的应用 被引量:5
20
作者 陈媛 胡恒 王文圣 《水电能源科学》 北大核心 2010年第5期22-25,共4页
采用免疫进化算法(IEA)对概率神经网络(PNN)模型参数进行优化,并应用于水质预测中。以黄河小浪底至花园口段为例,使用该模型预测水体中的COD和NH3-N浓度。预测结果表明,IEA-PNN模型应用于水质预测切实可行,能同时实现分类预测和定量预测... 采用免疫进化算法(IEA)对概率神经网络(PNN)模型参数进行优化,并应用于水质预测中。以黄河小浪底至花园口段为例,使用该模型预测水体中的COD和NH3-N浓度。预测结果表明,IEA-PNN模型应用于水质预测切实可行,能同时实现分类预测和定量预测,且预测精度较高。 展开更多
关键词 概率神经网络模型 免疫进化算法 水质 定量预测
在线阅读 下载PDF
上一页 1 2 111 下一页 到第
使用帮助 返回顶部