The Lanping Mesozoic—Cenozoic sedimentary basin, situated in the Middle section of the “Sanjiang" (Nujiang—Lancangjiang—Jinshajiang) area in the east margin of the Tibet plateau, is well known for its large p...The Lanping Mesozoic—Cenozoic sedimentary basin, situated in the Middle section of the “Sanjiang" (Nujiang—Lancangjiang—Jinshajiang) area in the east margin of the Tibet plateau, is well known for its large production of base\|metal sulphide deposits. The worldwide famous super\|large Jinding Pb\|Zn deposit is located in the middle of the basin. The evolution history of the Lanping basin since Mesozoic can be divided into six stages, i.e., ①active continental marginal basin (T 1—T 2); ②back\|arc rift basin (T 3—J 1); ③intracontinental depressive basin (J 2—J 3); ④foreland basin (K); ⑤strike\|slipping and mutual thrusting (E 1—E 3); and ⑥strike\|slipping and pull\|apart basin (N 1\|present). Three main types of Ag\|Cu polymetal deposits are recognized in the basin. Deposits of sedimentary exhalation\|hydrothermal reworking origin (type Ⅰ) are hosted chiefly in limestones, dolomitic limestones, and siliceous rocks of the Upper Triassic Sanhedong Formation (T 3 s ) in Sanshan area. Deposits formed through normal chemical sedimentation in closed to semi\|closed environments (type Ⅱ; e.g., Jinman and Baiyangchang) during the depressive and foreland basin stages occur in various horizons of Jurassic and Cretaceous ages. Hydrothermal reworking on deposits of this type during the Himalayan period are locally pronounced, especially in the west margin of the basin near the Lancangjiang thrust fault. The third deposit type in the basin (type Ⅲ; e.g., Baiyangping and Fulongchang) is the Ag\|bearing tetrahedrite vein deposits occurring almost in all Mesozoic—Cenozoic strata, especially in the Cretaceous. Ore minerals formed during synsedimentary periods of types Ⅰ and Ⅱ are relatively simple and dominated by chalcopyrite and bornite, though sphalerite, galena, pyrite, tetrahedrite and pyrite are also present. In the deposits of type Ⅲ as well as in the ores formed during the hydrothermal reworking period in deposits of type Ⅰ and Ⅱ, ore minerals are extremely complicated and characterized by predominant Ag\|bearing tetrahedrite and other complex sulfosalts of Cu\|Ni\|Co\|Fe\|As\|S and Cu\|Bi\|S series. The associated gangue minerals are mainly quartz, siderite, Fe\|dolomite, barite, and celestite.展开更多
The Neoproterozoic Riviera W-REE-Mo deposit is one of the largest unmined tungsten resources in the world and is associated with pervasively altered A-type granites of the Neoproterozoic Cape Granite Suite Western Cap...The Neoproterozoic Riviera W-REE-Mo deposit is one of the largest unmined tungsten resources in the world and is associated with pervasively altered A-type granites of the Neoproterozoic Cape Granite Suite Western Cape, South Africa. The present study investigated the mineral chemistry of scheelite, the principal ore mineral with the aim to record the variation of solid solution molybdenum for geometallurgical purposes and also as an indicator of changing redox conditions of the mineralizing hydrothermal fluids. Methodology included UV-fluorescence studies and micro-analyses by LA-ICP-MS. Results have shown that at least four phases of scheelite are hosted by the endoskarn zone, potassic alteration zone and various quartz-carbonate veins. This reflects hydrothermal fluid evolution from early stage reduced to late stage, vein associated and more oxidized. The molybdenum content of the dominant early phase scheelite is low and renders the deposit amenable to low penalty mineral recovery.展开更多
Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming...Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during展开更多
The types, composition and physico-chemical conditions of primary fluid inclusions were researched. The results show that the primary fluid inclusions contain vapor and liquid phase type (Type I), daughter mineral-b...The types, composition and physico-chemical conditions of primary fluid inclusions were researched. The results show that the primary fluid inclusions contain vapor and liquid phase type (Type I), daughter mineral-bearing type (Type II) and pure liquid phase type (Type III). The compositions of vapor are mainly H20 and CO2 with a tiny amounts of CH4 and H2; the liquid phase mainly contains Mg2+, Ca2+, Na+, K+, CI- and SO]-, and w(Na+)/w(K+)〉l; the homogenization temperatures of the primary fluid inclusions can be divided into 190-250 ℃, 250-340 ℃ and 360-420 ℃, corresponding to the salinities of 4%-9%, 9%-14%, and 14%-20.43% (NaC1 equivalent mass fraction), respectively. The mineralization process can be divided into three episodes: the silicatization stage, the quartz-sulfide stage, and the carbonatization stage, and all of them are associated with the ore-forming hydrothermal fluid activity. The origin of the hydrothermal fluid is from magrnatic water mainly, and later it mixes with the groundwater and meteoric water, which lead to the decrease of temperature and salinity. The decrease of salinity, temperature and pressure are the main causes of the metallogenic elements unloading and enriching in the favorable position.展开更多
文摘The Lanping Mesozoic—Cenozoic sedimentary basin, situated in the Middle section of the “Sanjiang" (Nujiang—Lancangjiang—Jinshajiang) area in the east margin of the Tibet plateau, is well known for its large production of base\|metal sulphide deposits. The worldwide famous super\|large Jinding Pb\|Zn deposit is located in the middle of the basin. The evolution history of the Lanping basin since Mesozoic can be divided into six stages, i.e., ①active continental marginal basin (T 1—T 2); ②back\|arc rift basin (T 3—J 1); ③intracontinental depressive basin (J 2—J 3); ④foreland basin (K); ⑤strike\|slipping and mutual thrusting (E 1—E 3); and ⑥strike\|slipping and pull\|apart basin (N 1\|present). Three main types of Ag\|Cu polymetal deposits are recognized in the basin. Deposits of sedimentary exhalation\|hydrothermal reworking origin (type Ⅰ) are hosted chiefly in limestones, dolomitic limestones, and siliceous rocks of the Upper Triassic Sanhedong Formation (T 3 s ) in Sanshan area. Deposits formed through normal chemical sedimentation in closed to semi\|closed environments (type Ⅱ; e.g., Jinman and Baiyangchang) during the depressive and foreland basin stages occur in various horizons of Jurassic and Cretaceous ages. Hydrothermal reworking on deposits of this type during the Himalayan period are locally pronounced, especially in the west margin of the basin near the Lancangjiang thrust fault. The third deposit type in the basin (type Ⅲ; e.g., Baiyangping and Fulongchang) is the Ag\|bearing tetrahedrite vein deposits occurring almost in all Mesozoic—Cenozoic strata, especially in the Cretaceous. Ore minerals formed during synsedimentary periods of types Ⅰ and Ⅱ are relatively simple and dominated by chalcopyrite and bornite, though sphalerite, galena, pyrite, tetrahedrite and pyrite are also present. In the deposits of type Ⅲ as well as in the ores formed during the hydrothermal reworking period in deposits of type Ⅰ and Ⅱ, ore minerals are extremely complicated and characterized by predominant Ag\|bearing tetrahedrite and other complex sulfosalts of Cu\|Ni\|Co\|Fe\|As\|S and Cu\|Bi\|S series. The associated gangue minerals are mainly quartz, siderite, Fe\|dolomite, barite, and celestite.
文摘The Neoproterozoic Riviera W-REE-Mo deposit is one of the largest unmined tungsten resources in the world and is associated with pervasively altered A-type granites of the Neoproterozoic Cape Granite Suite Western Cape, South Africa. The present study investigated the mineral chemistry of scheelite, the principal ore mineral with the aim to record the variation of solid solution molybdenum for geometallurgical purposes and also as an indicator of changing redox conditions of the mineralizing hydrothermal fluids. Methodology included UV-fluorescence studies and micro-analyses by LA-ICP-MS. Results have shown that at least four phases of scheelite are hosted by the endoskarn zone, potassic alteration zone and various quartz-carbonate veins. This reflects hydrothermal fluid evolution from early stage reduced to late stage, vein associated and more oxidized. The molybdenum content of the dominant early phase scheelite is low and renders the deposit amenable to low penalty mineral recovery.
文摘Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during
基金Project(200911007-04) supported by the Special Funds for Scientific Research of Land and Natural Resources, ChinaProject (2007CB411405) supported by the National Basic Research Program of ChinaProject(20109901) supported by the National Crisis Office of China
文摘The types, composition and physico-chemical conditions of primary fluid inclusions were researched. The results show that the primary fluid inclusions contain vapor and liquid phase type (Type I), daughter mineral-bearing type (Type II) and pure liquid phase type (Type III). The compositions of vapor are mainly H20 and CO2 with a tiny amounts of CH4 and H2; the liquid phase mainly contains Mg2+, Ca2+, Na+, K+, CI- and SO]-, and w(Na+)/w(K+)〉l; the homogenization temperatures of the primary fluid inclusions can be divided into 190-250 ℃, 250-340 ℃ and 360-420 ℃, corresponding to the salinities of 4%-9%, 9%-14%, and 14%-20.43% (NaC1 equivalent mass fraction), respectively. The mineralization process can be divided into three episodes: the silicatization stage, the quartz-sulfide stage, and the carbonatization stage, and all of them are associated with the ore-forming hydrothermal fluid activity. The origin of the hydrothermal fluid is from magrnatic water mainly, and later it mixes with the groundwater and meteoric water, which lead to the decrease of temperature and salinity. The decrease of salinity, temperature and pressure are the main causes of the metallogenic elements unloading and enriching in the favorable position.