The uplift history has been becoming the key for the geological science of Qinghai—Tibet plateau. The scholars abroad have reconstructed uplift history of the plateau by studying geological process of the inner globe...The uplift history has been becoming the key for the geological science of Qinghai—Tibet plateau. The scholars abroad have reconstructed uplift history of the plateau by studying geological process of the inner globe, they considered that the altitude of the plateau got up to the maximum at 14Ma (M.Coleman et al, 1995; S.Turner et al, 1993)or the plateau got to the present elevation at about 8Ma (T.M.Harrison,1992). The Chinese geologists make use of substitutes of outer environmental elements to deduce that the uplift of Qinghai—Tibet plateau began from 3 4Ma(Li Jijun,1995). It is obvious that there are the different views and controversies about the plateau uplift history.展开更多
Aiming at the problem that the traditional Dempster Shafer (D-S) evidence theory cannot deal with conflicted evidences effectively and correctly, this paper points out that the key issue of this problem is to measure ...Aiming at the problem that the traditional Dempster Shafer (D-S) evidence theory cannot deal with conflicted evidences effectively and correctly, this paper points out that the key issue of this problem is to measure the degree of conflict between evidences correctly after analyzing various improved methods. The existing evidence conflict measure methods are analyzed, and a new evidence conflict measure method called evidence similarity measure based on the Tanimoto measure is proposed, while a new evidence combination method is proposed on the basis of evidence similarity measure. Firstly, the conflict degrees between evidences are obtained through the evidence similarity measure. Then the evidence sources are modified based on the credibility of different evidences and the weights of conflicted parts of evidences on different focal elements are determined. Finally, the fusion result is obtained by this method. Numerical examples show that the proposed method can effectively fuse evidences when evidences are consistent or highly conflicted, and it has a fast convergence speed, a high degree of accuracy and good adaptability.展开更多
Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss...Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.展开更多
Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rul...Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rule are analyzed and compared. A new combination approach is proposed. Calculate the reliabilities of evidence sources using existing evidences. Construct reliabilities judge matrixes and get the weights of each evidence source. Weight average all inputted evidences. Combine processed evidences with D-S combination rule repeatedly to identify a target. The application in multi-sensor target reeognition as well as the comparison with typical alternatives all validated that this approach can dispose highly conflict evidences efficiently and get reasonable reeognition results rapidly.展开更多
To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode ...To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.展开更多
An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence acc...An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence according to their reliability, the effect of unreliable evidence is reduced, and then get the fusion result that is closer to the truth. An example to expand the advantage of this method is given. The example proves that this method is helpful to find a correct result.展开更多
Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degr...Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality, betweenness centra- lity and closeness centrality are taken into consideration in the proposed method. Numerical examples are used to illustrate the effectiveness of the proposed method.展开更多
Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input...Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained.展开更多
Evidence theory has been widely used in the information fusion for its effectiveness of the uncertainty reasoning. However, the classical DS evidence theory involves counter-intuitive behaviors when the high conflict ...Evidence theory has been widely used in the information fusion for its effectiveness of the uncertainty reasoning. However, the classical DS evidence theory involves counter-intuitive behaviors when the high conflict information exists. Based on the analysis of some modified methods, Assigning the weighting factors according to the intrinsic characteristics of the existing evidence sources is proposed, which is determined on the evidence distance theory. From the numerical examples, the proposed method provides a reasonable result with good convergence efficiency. In addition, the new rule retrieves to the Yager's formula when all the evidence sources contradict to each other completely.展开更多
As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-...As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-of-the-art numerical methods,the vertex method and the sampling method,are commonly used to calculate the resulting uncertainty based on the evidence theory.The vertex method is very effective for the monotonous system,but not for the non-monotonous one due to its high computational errors.The sampling method is applicable for both systems.But it always requires a high computational cost in UQ analyses,which makes it inefficient in most complex engineering systems.In this work,a computational intelligence approach is developed to reduce the computational cost and improve the practical utility of the evidence theory in UQ analyses.The method is demonstrated on two challenging problems proposed by Sandia National Laboratory.Simulation results show that the computational efficiency of the proposed method outperforms both the vertex method and the sampling method without decreasing the degree of accuracy.Especially,when the numbers of uncertain parameters and focal elements are large,and the system model is non-monotonic,the computational cost is five times less than that of the sampling method.展开更多
The research on the damage effectiveness assessment of anti-ship missiles involves system science and weapon science, and has essential strategic research significance. With comprehensive analysis of the specific proc...The research on the damage effectiveness assessment of anti-ship missiles involves system science and weapon science, and has essential strategic research significance. With comprehensive analysis of the specific process of the damage assessment process of anti-missile against ships, a synthetic damage effectiveness assessment process is proposed based on the double hierarchy linguistic term set and the evidence theory. In order to improve the accuracy of the expert ’s assessment information, double hierarchy linguistic terms are used to describe the assessment opinions of experts. In order to avoid the loss of experts ’ original information caused by information fusion rules, the evidence theory is used to fuse the assessment information of various experts on each case. Good stability of the assessment process can be reflected through sensitivity analysis, and the fluctuation of a certain parameter does not have an excessive influence on the assessment results. The assessment process is accurate enough to be reflected through comparative analysis and it has a good advantage in damage effectiveness assessment.展开更多
In cognitive radio networks, spectrum sensing is one of the most important functions to identify available spectrum for improving the spectrum utilization. Due to the open characteristic of the wireless electromagneti...In cognitive radio networks, spectrum sensing is one of the most important functions to identify available spectrum for improving the spectrum utilization. Due to the open characteristic of the wireless electromagnetic environment, the wireless network is vulnerable to be attacked by malicious users(MUs), and spectrum sensing data falsification(SSDF) attack is one of the most harmful attacks on spectrum sensing performance. In this article,an algorithm based on the evidence theory and fuzzy entropy is proposed to resist SSDF attacks. In this algorithm, secondary users(SUs) obtain the corresponding degree of membership function and basic probability assignment function based on the local energy detection result. The new conflicting coefficient is calculated based on the evidence distance and classical conflicting coefficient, and the conflicting weight of the evidence is obtained.The fuzzy weight is calculated by the fuzzy entropy. The credibility weight is obtained by updating the credibility. On this basis, the probability assignment function of the evidence is corrected, and the final result is obtained by using the fusion formula. Simulation results show that the proposed algorithm has a higher detection probability and lower false alarm probability than other algorithms.It can effectively defend against SSDF attacks and improve the performance of spectrum sensing.展开更多
In order to achieve the information fusion in the time domain based on the evidence theory, an evidence combination method in the time domain based on reliability and importance is proposed according to the idea of ev...In order to achieve the information fusion in the time domain based on the evidence theory, an evidence combination method in the time domain based on reliability and importance is proposed according to the idea of evidence discount. Firstly, the distortion of the time-domain evidence is judged based on single exponential smoothing. The real-time reliability of the evidence at the adjacent time is obtained by the real-time reliability assessment method of the evidence based on the credibility decay model.Then, the relative importance of the evidence at the adjacent time is obtained by comprehensively considering improved conflict degree and uncertainty. Finally, based on the criterion of evidence discount and the Dempster’s rule of combination, the evidence combination is carried out to achieve the sequential combination of time-domain evidence. The numerical simulation and analysis show that this method has fully embodied the dynamic characteristics of time-domain evidence combination, and it has strong processing ability for conflict information and anti-disturbing ability.The proposed method has good applicability to information fusion in the time domain.展开更多
In order to effectively deal with the conflict temporal evidences without affecting the sequential and dynamic characteristics in the multi-sensor target recognition(MSTR) system at the decision making level, this pap...In order to effectively deal with the conflict temporal evidences without affecting the sequential and dynamic characteristics in the multi-sensor target recognition(MSTR) system at the decision making level, this paper proposes a Dempster-Shafer(DS) theory and intuitionistic fuzzy set(IFS) based temporal evidence combination method(DSIFS-TECM). To realize the method,the relationship between DS theory and IFS is firstly analyzed. And then the intuitionistic fuzzy possibility degree of intuitionistic fuzzy value(IFPD-IFV) is defined, and a novel ranking method with isotonicity for IFV is proposed. Finally, a calculation method for relative reliability factor(RRF) is designed based on the proposed ranking method. As a proof of the method, numerical analysis and experimental simulation are performed. The results indicate DSIFS-TECM is capable of dealing with the conflict temporal evidences and sensitive to the changing of time. Furthermore, compared with the existing methods, DSIFS-TECM has stronger ability of anti-interference.展开更多
Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s...Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation.展开更多
This paper proposes a novel dynamic Petri net (PN) model based on Dempster-Shafer (D-S) evidence theory, and this improved evidential Petri net (EPN) model is used in knowledge inference and reliability analysis of co...This paper proposes a novel dynamic Petri net (PN) model based on Dempster-Shafer (D-S) evidence theory, and this improved evidential Petri net (EPN) model is used in knowledge inference and reliability analysis of complex mechanical systems. The EPN could take epistemic uncertainty such as interval information, subjective information into account by applying D-S evidence quantification theory. A dynamic representation model is also proposed based on the dynamic operation rules of the EPN model, and an improved artificial bee colony (ABC) algorithm is employed to proceed optimization calculation during the complex systems' learning process. The improved ABC algorithm and D-S evidence theory overcome the disadvantage of extremely subjective in traditional knowledge inference efficiently and thus could improve the accuracy of the EPN learning model. Through a simple numerical case and a satellite driving system analysis, this paper proves the superiority of the EPN and the dynamic knowledge representation method in reliability analysis of complex systems.展开更多
The study on alternative combination rules in Dempster- Shafer theory (DST) when evidences are in conflict has emerged again recently as an interesting topic, especially in data/information fusion applications. The ...The study on alternative combination rules in Dempster- Shafer theory (DST) when evidences are in conflict has emerged again recently as an interesting topic, especially in data/information fusion applications. The earlier researches have mainly focused on investigating the alternative which would be appropriate for the conflicting situation, under the assumption that a conflict is identified. However, the current research shows that not only the combination rule but also the classical conflict coefficient in DST are not correct to determine the conflict degree between two pieces of evidences. Most existing methods of measuring conflict do not consider the open world situation, whose frame of discernment is incomplete. To solve this problem, a new conflict representa- tion model to determine the conflict degree between evidences is proposed in the generalized power space, which contains two parameters: the conflict distance and the conflict coefficient of inconsistent evidences. This paper argues that only when the con- flict measure value in the new representation model is high, it is safe to say the evidences are in conflict. Experiments illustrate the efficiency of the proposed conflict representation model.展开更多
Dezert-Smarandache(DSm) theory, a new information fusion theory, is widely applied in image processing, multiple targets tracking identification, and other areas for its excellent processing ability of imperfect inf...Dezert-Smarandache(DSm) theory, a new information fusion theory, is widely applied in image processing, multiple targets tracking identification, and other areas for its excellent processing ability of imperfect information. However, earlier research on DSm theory mainly focused on one sort of questions. An evidence fusion procedure is proposed based on the hybrid DSm model to compensate for a lack of research on the entire information procedure of DSm theory. This paper analyzes the evidence fusion procedure, as well as correlative node input and output information. Key steps and detailed procedures of evidence fusion are also discussed. Finally, an experiment illustrates the efficiency of the proposed evidence fusion procedure.展开更多
How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measu...How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measures of evidence distance. The new proposed method is comprehensive and generalized. Numerical examples are used to illustrate the effectiveness of the proposed method.展开更多
The eastern Tianshan metallogenic belt(E92°-96°, N41°-43°),one of the most important Cu-Ni-Au mineral districts in China,is located at the conjunction of the Siberian plate and Tarim plate.The fuzz...The eastern Tianshan metallogenic belt(E92°-96°, N41°-43°),one of the most important Cu-Ni-Au mineral districts in China,is located at the conjunction of the Siberian plate and Tarim plate.The fuzzy weight of evidence method(FWofE) is applied to predict and delineate the most prospective areas for copper resource based on the available展开更多
文摘The uplift history has been becoming the key for the geological science of Qinghai—Tibet plateau. The scholars abroad have reconstructed uplift history of the plateau by studying geological process of the inner globe, they considered that the altitude of the plateau got up to the maximum at 14Ma (M.Coleman et al, 1995; S.Turner et al, 1993)or the plateau got to the present elevation at about 8Ma (T.M.Harrison,1992). The Chinese geologists make use of substitutes of outer environmental elements to deduce that the uplift of Qinghai—Tibet plateau began from 3 4Ma(Li Jijun,1995). It is obvious that there are the different views and controversies about the plateau uplift history.
基金supported by the National Natural Science Foundation of China(61573283)
文摘Aiming at the problem that the traditional Dempster Shafer (D-S) evidence theory cannot deal with conflicted evidences effectively and correctly, this paper points out that the key issue of this problem is to measure the degree of conflict between evidences correctly after analyzing various improved methods. The existing evidence conflict measure methods are analyzed, and a new evidence conflict measure method called evidence similarity measure based on the Tanimoto measure is proposed, while a new evidence combination method is proposed on the basis of evidence similarity measure. Firstly, the conflict degrees between evidences are obtained through the evidence similarity measure. Then the evidence sources are modified based on the credibility of different evidences and the weights of conflicted parts of evidences on different focal elements are determined. Finally, the fusion result is obtained by this method. Numerical examples show that the proposed method can effectively fuse evidences when evidences are consistent or highly conflicted, and it has a fast convergence speed, a high degree of accuracy and good adaptability.
基金supported by the National Natural Science Foundation of China(61903305,62073267)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.
基金This project was supported by the National "863" High Technology Research and Development Program of China(2001AA602021)
文摘Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rule are analyzed and compared. A new combination approach is proposed. Calculate the reliabilities of evidence sources using existing evidences. Construct reliabilities judge matrixes and get the weights of each evidence source. Weight average all inputted evidences. Combine processed evidences with D-S combination rule repeatedly to identify a target. The application in multi-sensor target reeognition as well as the comparison with typical alternatives all validated that this approach can dispose highly conflict evidences efficiently and get reasonable reeognition results rapidly.
文摘To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.
文摘An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence according to their reliability, the effect of unreliable evidence is reduced, and then get the fusion result that is closer to the truth. An example to expand the advantage of this method is given. The example proves that this method is helpful to find a correct result.
基金supported by the National Natural Science Foundation of China(61174022)the National High Technology Research and Development Program of China(863 Program)(2013AA013801)+2 种基金the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University(BUAA-VR-14KF-02)the General Research Program of the Science Supported by Sichuan Provincial Department of Education(14ZB0322)the Fundamental Research Funds for the Central Universities(XDJK2014D008)
文摘Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality, betweenness centra- lity and closeness centrality are taken into consideration in the proposed method. Numerical examples are used to illustrate the effectiveness of the proposed method.
基金Project(07JA790092) supported by the Research Grants from Humanities and Social Science Program of Ministry of Education of ChinaProject(10MR44) supported by the Fundamental Research Funds for the Central Universities in China
文摘Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained.
文摘Evidence theory has been widely used in the information fusion for its effectiveness of the uncertainty reasoning. However, the classical DS evidence theory involves counter-intuitive behaviors when the high conflict information exists. Based on the analysis of some modified methods, Assigning the weighting factors according to the intrinsic characteristics of the existing evidence sources is proposed, which is determined on the evidence distance theory. From the numerical examples, the proposed method provides a reasonable result with good convergence efficiency. In addition, the new rule retrieves to the Yager's formula when all the evidence sources contradict to each other completely.
基金supported by the Advanced Research of National Defense Foundation of China(426010501)
文摘As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-of-the-art numerical methods,the vertex method and the sampling method,are commonly used to calculate the resulting uncertainty based on the evidence theory.The vertex method is very effective for the monotonous system,but not for the non-monotonous one due to its high computational errors.The sampling method is applicable for both systems.But it always requires a high computational cost in UQ analyses,which makes it inefficient in most complex engineering systems.In this work,a computational intelligence approach is developed to reduce the computational cost and improve the practical utility of the evidence theory in UQ analyses.The method is demonstrated on two challenging problems proposed by Sandia National Laboratory.Simulation results show that the computational efficiency of the proposed method outperforms both the vertex method and the sampling method without decreasing the degree of accuracy.Especially,when the numbers of uncertain parameters and focal elements are large,and the system model is non-monotonic,the computational cost is five times less than that of the sampling method.
文摘The research on the damage effectiveness assessment of anti-ship missiles involves system science and weapon science, and has essential strategic research significance. With comprehensive analysis of the specific process of the damage assessment process of anti-missile against ships, a synthetic damage effectiveness assessment process is proposed based on the double hierarchy linguistic term set and the evidence theory. In order to improve the accuracy of the expert ’s assessment information, double hierarchy linguistic terms are used to describe the assessment opinions of experts. In order to avoid the loss of experts ’ original information caused by information fusion rules, the evidence theory is used to fuse the assessment information of various experts on each case. Good stability of the assessment process can be reflected through sensitivity analysis, and the fluctuation of a certain parameter does not have an excessive influence on the assessment results. The assessment process is accurate enough to be reflected through comparative analysis and it has a good advantage in damage effectiveness assessment.
基金supported by the National Natural Science Foundation of China(61701134,51809056)the Fundamental Research Funds for the Central Universities of China(HEUCFM180802)+1 种基金the National Key Research and Development Program of China(2016YFF0102806)the Natural Science Foundation of Heilongjiang Province,China(F2017004)。
文摘In cognitive radio networks, spectrum sensing is one of the most important functions to identify available spectrum for improving the spectrum utilization. Due to the open characteristic of the wireless electromagnetic environment, the wireless network is vulnerable to be attacked by malicious users(MUs), and spectrum sensing data falsification(SSDF) attack is one of the most harmful attacks on spectrum sensing performance. In this article,an algorithm based on the evidence theory and fuzzy entropy is proposed to resist SSDF attacks. In this algorithm, secondary users(SUs) obtain the corresponding degree of membership function and basic probability assignment function based on the local energy detection result. The new conflicting coefficient is calculated based on the evidence distance and classical conflicting coefficient, and the conflicting weight of the evidence is obtained.The fuzzy weight is calculated by the fuzzy entropy. The credibility weight is obtained by updating the credibility. On this basis, the probability assignment function of the evidence is corrected, and the final result is obtained by using the fusion formula. Simulation results show that the proposed algorithm has a higher detection probability and lower false alarm probability than other algorithms.It can effectively defend against SSDF attacks and improve the performance of spectrum sensing.
基金supported by the National Natural Science Foundation of China(71571190 71601183+1 种基金 L1534031)the Shanxi Province Natural Science Foundation of China(2014JQ2-7045)
文摘In order to achieve the information fusion in the time domain based on the evidence theory, an evidence combination method in the time domain based on reliability and importance is proposed according to the idea of evidence discount. Firstly, the distortion of the time-domain evidence is judged based on single exponential smoothing. The real-time reliability of the evidence at the adjacent time is obtained by the real-time reliability assessment method of the evidence based on the credibility decay model.Then, the relative importance of the evidence at the adjacent time is obtained by comprehensively considering improved conflict degree and uncertainty. Finally, based on the criterion of evidence discount and the Dempster’s rule of combination, the evidence combination is carried out to achieve the sequential combination of time-domain evidence. The numerical simulation and analysis show that this method has fully embodied the dynamic characteristics of time-domain evidence combination, and it has strong processing ability for conflict information and anti-disturbing ability.The proposed method has good applicability to information fusion in the time domain.
基金supported by the National Natural Science Foundation of China(61272011)
文摘In order to effectively deal with the conflict temporal evidences without affecting the sequential and dynamic characteristics in the multi-sensor target recognition(MSTR) system at the decision making level, this paper proposes a Dempster-Shafer(DS) theory and intuitionistic fuzzy set(IFS) based temporal evidence combination method(DSIFS-TECM). To realize the method,the relationship between DS theory and IFS is firstly analyzed. And then the intuitionistic fuzzy possibility degree of intuitionistic fuzzy value(IFPD-IFV) is defined, and a novel ranking method with isotonicity for IFV is proposed. Finally, a calculation method for relative reliability factor(RRF) is designed based on the proposed ranking method. As a proof of the method, numerical analysis and experimental simulation are performed. The results indicate DSIFS-TECM is capable of dealing with the conflict temporal evidences and sensitive to the changing of time. Furthermore, compared with the existing methods, DSIFS-TECM has stronger ability of anti-interference.
基金supported by the National Natural Science Foundation of China(6167138461703338)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2016JM6018)the Project of Science and Technology Foundationthe Fundamental Research Funds for the Central Universities(3102017OQD020)
文摘Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation.
基金supported by the National Basic Research Program of China(2013CB733002)
文摘This paper proposes a novel dynamic Petri net (PN) model based on Dempster-Shafer (D-S) evidence theory, and this improved evidential Petri net (EPN) model is used in knowledge inference and reliability analysis of complex mechanical systems. The EPN could take epistemic uncertainty such as interval information, subjective information into account by applying D-S evidence quantification theory. A dynamic representation model is also proposed based on the dynamic operation rules of the EPN model, and an improved artificial bee colony (ABC) algorithm is employed to proceed optimization calculation during the complex systems' learning process. The improved ABC algorithm and D-S evidence theory overcome the disadvantage of extremely subjective in traditional knowledge inference efficiently and thus could improve the accuracy of the EPN learning model. Through a simple numerical case and a satellite driving system analysis, this paper proves the superiority of the EPN and the dynamic knowledge representation method in reliability analysis of complex systems.
基金supported by the National Natural Science Foundation of China (60572161 60874105)+4 种基金the Excellent Ph.D. Paper Author Foundation of China (200443)the Postdoctoral Science Foundation of China (20070421094)the Program for New Century Excellent Talents in University (NCET-08-0345)the Shanghai Rising-Star Program(09QA1402900)the Ministry of Education Key Lab of Intelligent Computing & Signal Processing (2009ICIP03)
文摘The study on alternative combination rules in Dempster- Shafer theory (DST) when evidences are in conflict has emerged again recently as an interesting topic, especially in data/information fusion applications. The earlier researches have mainly focused on investigating the alternative which would be appropriate for the conflicting situation, under the assumption that a conflict is identified. However, the current research shows that not only the combination rule but also the classical conflict coefficient in DST are not correct to determine the conflict degree between two pieces of evidences. Most existing methods of measuring conflict do not consider the open world situation, whose frame of discernment is incomplete. To solve this problem, a new conflict representa- tion model to determine the conflict degree between evidences is proposed in the generalized power space, which contains two parameters: the conflict distance and the conflict coefficient of inconsistent evidences. This paper argues that only when the con- flict measure value in the new representation model is high, it is safe to say the evidences are in conflict. Experiments illustrate the efficiency of the proposed conflict representation model.
基金supported by the National Natural Science Foundation of China(61102168)the Military Innovation Foundation(X11QN106)
文摘Dezert-Smarandache(DSm) theory, a new information fusion theory, is widely applied in image processing, multiple targets tracking identification, and other areas for its excellent processing ability of imperfect information. However, earlier research on DSm theory mainly focused on one sort of questions. An evidence fusion procedure is proposed based on the hybrid DSm model to compensate for a lack of research on the entire information procedure of DSm theory. This paper analyzes the evidence fusion procedure, as well as correlative node input and output information. Key steps and detailed procedures of evidence fusion are also discussed. Finally, an experiment illustrates the efficiency of the proposed evidence fusion procedure.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2013AA013801)the National Natural Science Foundation of China(61174022+4 种基金61573290)the open funding project of State Key Laboratory of Virtual Reality Technology and Systemsthe Beihang University(BUAA-VR-14KF-02)the General Research Program of Natural Science of Sichuan Provincial Department of Education(14ZB0322)the Self-financing Program of State Ethnic Affairs Commission of China(14SCZ014)
文摘How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measures of evidence distance. The new proposed method is comprehensive and generalized. Numerical examples are used to illustrate the effectiveness of the proposed method.
文摘The eastern Tianshan metallogenic belt(E92°-96°, N41°-43°),one of the most important Cu-Ni-Au mineral districts in China,is located at the conjunction of the Siberian plate and Tarim plate.The fuzzy weight of evidence method(FWofE) is applied to predict and delineate the most prospective areas for copper resource based on the available