The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters co...The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters concerning train load,thermal effect,and foundation deformation of high-speed railway ballastless track,together with the structural design methods are summarized.Finally,some suggestions on the future work are provided.展开更多
Axiomatic design (AD) and theory of inventive problem solving (TRIZ) are widely used in conceptual design. Both of them have limitations, however. We presented an integrated model of these two methods to increase the ...Axiomatic design (AD) and theory of inventive problem solving (TRIZ) are widely used in conceptual design. Both of them have limitations, however. We presented an integrated model of these two methods to increase the efficiency and quality of the problem solving process for conceptual design. AD is used for systematically defining and structuring a problem into a hierarchy. Sometimes, the design matrix is coupled in AD which indicates the functional requirements are coupled. TRIZ separation principles can be used to separate non-independent design parameters, which provide innovative solutions at each hierarchical level. We applied the integrated model to the heating and drying equipment of bitumen reproduction device. The result verifies that the integrated model can work very well in conceptual design.展开更多
In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interact...In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.展开更多
Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the co...Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.展开更多
Inspired by the remarkable electromagnetic response capabilities of the complex morphologies and subtle microstructures evolved by natural organisms,this paper delves into the research advancements and future applicat...Inspired by the remarkable electromagnetic response capabilities of the complex morphologies and subtle microstructures evolved by natural organisms,this paper delves into the research advancements and future application potential of bionic microwave-absorbing materials(BMAMs).It outlines the significance of achieving high-performance microwave-absorbing materials through ingenious microstructural design and judicious composition selection,while emphasizing the innovative strategies offered by bionic manufacturing.Furthermore,this work meticulously analyzes how inspiration can be drawn from the intricate structures of marine organisms,plants,animals,and nonmetallic minerals in nature to devise and develop BMAMs with superior electromagnetic wave absorption properties.Additionally,the paper provides an in-depth exploration of the theoretical underpinnings of BMAMs,particularly the latest breakthroughs in broadband absorption.By incorporating advanced methodologies such as simulation modeling and bionic gradient design,we unravel the scientific principles governing the microwave absorption mechanisms of BMAMs,thereby furnishing a solid theoretical foundation for understanding and optimizing their performance.Ultimately,this review aims to offer valuable insights and inspiration to researchers in related fields,fostering the collective advancement of research on BMAMs.展开更多
基金supported by the National Natural Science Foundation of China (No. 51008258)the Fundamental Research Funds for the Central Universities (No. SWJTU09BR038)
文摘The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters concerning train load,thermal effect,and foundation deformation of high-speed railway ballastless track,together with the structural design methods are summarized.Finally,some suggestions on the future work are provided.
基金Funded by the Natural Science Foundation of China (No. 50575083)
文摘Axiomatic design (AD) and theory of inventive problem solving (TRIZ) are widely used in conceptual design. Both of them have limitations, however. We presented an integrated model of these two methods to increase the efficiency and quality of the problem solving process for conceptual design. AD is used for systematically defining and structuring a problem into a hierarchy. Sometimes, the design matrix is coupled in AD which indicates the functional requirements are coupled. TRIZ separation principles can be used to separate non-independent design parameters, which provide innovative solutions at each hierarchical level. We applied the integrated model to the heating and drying equipment of bitumen reproduction device. The result verifies that the integrated model can work very well in conceptual design.
文摘In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.
文摘Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.
基金the financial support provided by Graduate Scientific Research and Innovation Foundation of Chongqing,China(CYB22007,CYS22005)Projects(No.2020CDJXZ001)supported by the Fundamental Research Funds for the Central Universities+2 种基金the Technology Innovation and Application Development Special Project of Chongqing(Z20211350 and Z20211351)Scientific Research Project of Chongqing Ecological Environment Bureau(No.CQEE2022STHBZZ118)Fundamental Research Funds for the Central Universities(Grant No.2024IAIS-QN008)。
文摘Inspired by the remarkable electromagnetic response capabilities of the complex morphologies and subtle microstructures evolved by natural organisms,this paper delves into the research advancements and future application potential of bionic microwave-absorbing materials(BMAMs).It outlines the significance of achieving high-performance microwave-absorbing materials through ingenious microstructural design and judicious composition selection,while emphasizing the innovative strategies offered by bionic manufacturing.Furthermore,this work meticulously analyzes how inspiration can be drawn from the intricate structures of marine organisms,plants,animals,and nonmetallic minerals in nature to devise and develop BMAMs with superior electromagnetic wave absorption properties.Additionally,the paper provides an in-depth exploration of the theoretical underpinnings of BMAMs,particularly the latest breakthroughs in broadband absorption.By incorporating advanced methodologies such as simulation modeling and bionic gradient design,we unravel the scientific principles governing the microwave absorption mechanisms of BMAMs,thereby furnishing a solid theoretical foundation for understanding and optimizing their performance.Ultimately,this review aims to offer valuable insights and inspiration to researchers in related fields,fostering the collective advancement of research on BMAMs.