The simulation model Tunev(tunnel evacuation) was developed for people's evacuation in tunnel fire. It contains simple database of the people's behavioral reaction and structure characteristic parameters of tunnel...The simulation model Tunev(tunnel evacuation) was developed for people's evacuation in tunnel fire. It contains simple database of the people's behavioral reaction and structure characteristic parameters of tunnel fireproofing. The model can be used to calculate the total evacuation time in various scenes when fire occurs in the different locations of the tunnel. Combined with fire simulation soft ware CFD- POENICS3.5, Tunev model can be used to calculate the fire danger coming time; by comparing with these two kinds of time, it can be used to assess the safety of the evacuation, and the evacuation process also have a dynamic demo. The simulation results show that the Tunev model can be used to predict the reliability of safe evacuation for people in tunnel fire and provide references for people's safe escape scheme. Some relevant concepts of the model were described and an evacuation simulation of a typical tunnel case, i.e. Xuefeng Mountain Tunnel was performed by using this model. And the model's validation and actual aoolication were also described.展开更多
The major objective of this work was to calculate evacuation capacity and solve the optimal routing problem in a given station topology from a network optimization perspective where station facilities were modelled as...The major objective of this work was to calculate evacuation capacity and solve the optimal routing problem in a given station topology from a network optimization perspective where station facilities were modelled as open finite queueing networks with a multi-objective set of performance measures. The optimal routing problem was determined so that the number of evacuation passengers was maximized while the service level was higher than a certain criterion. An analytical technique for modelling open finite queueing networks, called the iteration generalized expansion method(IGEM), was utilized to calculate the desired outputs. A differential evolution algorithm was presented for determining the optimal routes. As demonstrated, the design methodology which combines the optimization and analytical queueing network models provides a very effective procedure for simultaneously determining the service level and the maximum number of evacuation passengers in the best evacuation routes.展开更多
The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedan...The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedance function for metro hubs which used the relationships among circulation speed,density and flow rate for pedestrians was defined.Then,a route optimization model which minimizes the movement time of the last evacuee was constructed to optimize evacuation performance.Solutions to the proposed mathematical model were obtained through an iterative optimization process.The route optimization model was applied to Xidan Station of Beijing Metro Line 4 based on the actual situations,and the calculation results of the model were tested using buildingExodus microscopic evacuation simulation software.The simulation result shows that the proposed model shortens the evacuation time by 16.05%,3.15% and 2.78% compared with all or none method,equally split method and Logit model,respectively.Furthermore,when the population gets larger,evacuation efficiency in the proposed model has a greater advantage.展开更多
Abstract:Doses of inhaled radionuclides received during evacuation might be correlated with amounts of those radionuclides on an evacuee's body surface. The purpose of the present study was to estimate thyroid equ...Abstract:Doses of inhaled radionuclides received during evacuation might be correlated with amounts of those radionuclides on an evacuee's body surface. The purpose of the present study was to estimate thyroid equivalent doses based on body surface contamination measured with a Geiger-Mueller survey meter on 2,087 evacuees from Tomioka, Okuma, Futaba, Naraha, Namie.展开更多
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor...To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.展开更多
In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and hea...In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and heat loss coefficient. The results of analysis show that the heat transfer between pipes in evacuated tube is one of the most important factors, which can lead to the decrease of the outlet temperature of working fluid. In order to eliminate the negative influence of the heat transfer between pipes, the hollow filled-type evacuated tube with U-tube(HUFET) was developed, and the heat transfer characteristics of HUFET were analyzed by theoretical and experimental studies. The results show that the thermal resistances decrease with the increase of the thermal conductivity of filled layer. When the thermal conductivity is over 10 W/(m·K), the change of thermal resistances is very little.Furthermore, the larger the thermal conductivity of filled layer, the less the rate of the energy transfer between the two pipes to the total energy transfer, which is between the absorber tube and the working fluid. There is a little difference between the efficiencies of HUFET and UFET, with the efficiency of HUFET 2.4% higher than that of UFET. Meanwhile, the validation of the model developed was confirmed by the experiment.展开更多
基金Project (20033179802) supported by the Science and Technology Programof China Western Transportation Development
文摘The simulation model Tunev(tunnel evacuation) was developed for people's evacuation in tunnel fire. It contains simple database of the people's behavioral reaction and structure characteristic parameters of tunnel fireproofing. The model can be used to calculate the total evacuation time in various scenes when fire occurs in the different locations of the tunnel. Combined with fire simulation soft ware CFD- POENICS3.5, Tunev model can be used to calculate the fire danger coming time; by comparing with these two kinds of time, it can be used to assess the safety of the evacuation, and the evacuation process also have a dynamic demo. The simulation results show that the Tunev model can be used to predict the reliability of safe evacuation for people in tunnel fire and provide references for people's safe escape scheme. Some relevant concepts of the model were described and an evacuation simulation of a typical tunnel case, i.e. Xuefeng Mountain Tunnel was performed by using this model. And the model's validation and actual aoolication were also described.
基金Project(2011BAG01B01)supported by the Key Technologies Research Development Program,ChinaProject(RCS2012ZZ002)supported by State Key Laboratory of Rail Traffic Control&Safety,China
文摘The major objective of this work was to calculate evacuation capacity and solve the optimal routing problem in a given station topology from a network optimization perspective where station facilities were modelled as open finite queueing networks with a multi-objective set of performance measures. The optimal routing problem was determined so that the number of evacuation passengers was maximized while the service level was higher than a certain criterion. An analytical technique for modelling open finite queueing networks, called the iteration generalized expansion method(IGEM), was utilized to calculate the desired outputs. A differential evolution algorithm was presented for determining the optimal routes. As demonstrated, the design methodology which combines the optimization and analytical queueing network models provides a very effective procedure for simultaneously determining the service level and the maximum number of evacuation passengers in the best evacuation routes.
基金Project(51078086)supported by the National Natural Science Foundation of China
文摘The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedance function for metro hubs which used the relationships among circulation speed,density and flow rate for pedestrians was defined.Then,a route optimization model which minimizes the movement time of the last evacuee was constructed to optimize evacuation performance.Solutions to the proposed mathematical model were obtained through an iterative optimization process.The route optimization model was applied to Xidan Station of Beijing Metro Line 4 based on the actual situations,and the calculation results of the model were tested using buildingExodus microscopic evacuation simulation software.The simulation result shows that the proposed model shortens the evacuation time by 16.05%,3.15% and 2.78% compared with all or none method,equally split method and Logit model,respectively.Furthermore,when the population gets larger,evacuation efficiency in the proposed model has a greater advantage.
文摘Abstract:Doses of inhaled radionuclides received during evacuation might be correlated with amounts of those radionuclides on an evacuee's body surface. The purpose of the present study was to estimate thyroid equivalent doses based on body surface contamination measured with a Geiger-Mueller survey meter on 2,087 evacuees from Tomioka, Okuma, Futaba, Naraha, Namie.
基金Project(ADLT 930-809R)supported by the Alabama Department of Transportation,USA
文摘To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.
基金Projects(2011BAJ03B12-3,2013BAJ10B02-03) supported by the National Science and Technology Program during the 12th Five-year Plan Period,ChinaProject(51378005) supported by the National Natural Science Foundation,China+1 种基金Projects(DUT14RC(3)123,DUT14RC(3)129) supported by Fundamental Research Funds for the Dalian University of Tecnology,ChinaProject(DUT14ZD210) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and heat loss coefficient. The results of analysis show that the heat transfer between pipes in evacuated tube is one of the most important factors, which can lead to the decrease of the outlet temperature of working fluid. In order to eliminate the negative influence of the heat transfer between pipes, the hollow filled-type evacuated tube with U-tube(HUFET) was developed, and the heat transfer characteristics of HUFET were analyzed by theoretical and experimental studies. The results show that the thermal resistances decrease with the increase of the thermal conductivity of filled layer. When the thermal conductivity is over 10 W/(m·K), the change of thermal resistances is very little.Furthermore, the larger the thermal conductivity of filled layer, the less the rate of the energy transfer between the two pipes to the total energy transfer, which is between the absorber tube and the working fluid. There is a little difference between the efficiencies of HUFET and UFET, with the efficiency of HUFET 2.4% higher than that of UFET. Meanwhile, the validation of the model developed was confirmed by the experiment.