This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate ...This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate change in both the thickness and length directions via power-law distributions and Mori-Tanaka model. The governing equation of motion of BDFG plate in the fluid-plate system is formulated basing on Hamilton's principle and the refined quasi three-dimensional (3D) plate theory with improved function f(z). The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to determine the added mass. The discrete system of equations is derived from the Galerkin weak form and numerically analyzed by IGA. The accuracy and reliability of the proposed solutions are verified by comparing the obtained results with those published in the literature. Moreover, the effects of the various parameters such as the interaction boundary condition, geometric parameter, submerged depth of plate, fluid density, fluid level, and the material volume control coefficients on the free vibration behavior of BDFG plate in the fluid medium are investigated in detail. Some major findings regarding the numerical results are withdrawn in conclusions.展开更多
In recent years, high-altitude aerostats have been increasingly developed in the direction of multi-functionality and large size. Due to the large size and the high flexibility, new challenges for large aerostats have...In recent years, high-altitude aerostats have been increasingly developed in the direction of multi-functionality and large size. Due to the large size and the high flexibility, new challenges for large aerostats have appeared in the configuration test and the deformation analysis. The methods of the configuration test and the deformation analysis for large airship have been researched and discussed. A tested method of the configuration,named internal scanning, is established to quickly obtain the spatial information of all surfaces for the large airship by the three-dimensional(3D) laser scanning technology. By using the surface wrap method, the configuration parameters of the large airship are calculated. According to the test data of the configuration, the structural dimensions such as the distances between the characteristic sections are measured. The method of the deformation analysis for the airship contains the algorithm of nonuniform rational B-splines(NURBS) and the finite element(FE)method. The algorithm of NURBS is used to obtain the reconfiguration model of the large airship. The seams are considered and the seam areas are divided. The FE model of the middle part of the large airship is established. The distributions of the stress and the strain for the large airship are obtained by the FE method. The position of the larger deformation for the airship is found.展开更多
基金This research is funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant number 107.02-2019.330.
文摘This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate change in both the thickness and length directions via power-law distributions and Mori-Tanaka model. The governing equation of motion of BDFG plate in the fluid-plate system is formulated basing on Hamilton's principle and the refined quasi three-dimensional (3D) plate theory with improved function f(z). The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to determine the added mass. The discrete system of equations is derived from the Galerkin weak form and numerically analyzed by IGA. The accuracy and reliability of the proposed solutions are verified by comparing the obtained results with those published in the literature. Moreover, the effects of the various parameters such as the interaction boundary condition, geometric parameter, submerged depth of plate, fluid density, fluid level, and the material volume control coefficients on the free vibration behavior of BDFG plate in the fluid medium are investigated in detail. Some major findings regarding the numerical results are withdrawn in conclusions.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (11421091)。
文摘In recent years, high-altitude aerostats have been increasingly developed in the direction of multi-functionality and large size. Due to the large size and the high flexibility, new challenges for large aerostats have appeared in the configuration test and the deformation analysis. The methods of the configuration test and the deformation analysis for large airship have been researched and discussed. A tested method of the configuration,named internal scanning, is established to quickly obtain the spatial information of all surfaces for the large airship by the three-dimensional(3D) laser scanning technology. By using the surface wrap method, the configuration parameters of the large airship are calculated. According to the test data of the configuration, the structural dimensions such as the distances between the characteristic sections are measured. The method of the deformation analysis for the airship contains the algorithm of nonuniform rational B-splines(NURBS) and the finite element(FE)method. The algorithm of NURBS is used to obtain the reconfiguration model of the large airship. The seams are considered and the seam areas are divided. The FE model of the middle part of the large airship is established. The distributions of the stress and the strain for the large airship are obtained by the FE method. The position of the larger deformation for the airship is found.