Erosion wear is a common failure mode in the oil and gas industry.In the hydraulic fracturing,the fracturing pipes are not only in high-pressure working environment,but also suffer from the impact of the high-speed so...Erosion wear is a common failure mode in the oil and gas industry.In the hydraulic fracturing,the fracturing pipes are not only in high-pressure working environment,but also suffer from the impact of the high-speed solid particles in the fracturing fluid.Beneath such complex conditions,the vulnerable components of the pipe system are prone to perforation or even burst accidents,which has become one of the most serious risks at the fracturing site.Unfortunately,it is not yet fully understood the erosion mechanism of pipe steel for hydraulic fracturing.Therefore,this article provides a detailed analysis of the erosion behavior of fracturing pipes under complex working conditions based on experiments and numerical simulations.Firstly,we conducted erosion experiments on AISI 4135 steel for fracturing pipes to investigate the erosion characteristics of the material.The effects of impact angle,flow velocity and applied stress on erosion wear were comprehensively considered.Then a particle impact dynamic model of erosion wear was developed based on the experimental parameters,and the evolution process of particle erosion under different impact angles,impact velocities and applied stress was analyzed.By combining the erosion characteristics,the micro-structure of the eroded area,and the micro-mechanics of erosion damage,the erosion mechanism of pipe steel under fracturing conditions was studied in detail for the first time.Under high-pressure operating conditions,it was demonstrated through experiments and numerical simulations that the size of the micro-defects in the eroded area increased as the applied stress increased,resulting in more severe erosion wear of fracturing pipes.展开更多
The sleeve sealing ball seat is one of the important components in the multistage fracturing process of horizontal wells.The erosion and wear of the surface will decrease the sealing performance of the fracturing ball...The sleeve sealing ball seat is one of the important components in the multistage fracturing process of horizontal wells.The erosion and wear of the surface will decrease the sealing performance of the fracturing ball and the ball seat.This leads to pressure leakage during the fracturing process and fracturing failure.In this paper,combined with the actual ball seat materials and working conditions during the fracturing process,the erosion tests of ductile iron and tungsten carbide materials under different erosion speeds,angles,and mortar concentrations are carried out.Then the erosion test results were analyzed by mathematical fitting,and a set of erosion models suitable for sliding sleeve setting ball seat materials were innovatively established.For the first time,this paper combines the erosion model obtained from the experiment and the computational fluid dynamics(CFD)with Fluent software to simulate the erosion of the ball seat.Based on the simulation results,the morphology of the sliding sleeve seat ball after erosion is predicted.Through analysis of the test and simulation results,it is showed that the erosion rate of tungsten carbide material is lower and the wear resistance is better under the condition of small angle erosion.This research can offer a strong basis for fracturing site selection,surface treatment methods,and prediction of failure time of ball seats.展开更多
Propellants containing micro-aluminium particles have been shown to produce faster burn rates than conventional gun propellants.However,they are also more abrasive than conventional propellants.Nano-material propellan...Propellants containing micro-aluminium particles have been shown to produce faster burn rates than conventional gun propellants.However,they are also more abrasive than conventional propellants.Nano-material propellants have been reported to give similar benefits to micron-material propellants but without the disadvantage of increased abrasion.Tests were conducted to compare the burn rates,ignitability and wear rates of a propellant loaded with 0% aluminium,15% micro-aluminium and 15%nano-aluminium.Closed vessel tests showed a burn rate increase of 39% in the range 30-250 MPa,and 70% at low pressure(50-100MPa)for the nano-aluminium propellant compared with the baseline propellant.The micro-aluminium propellant showed only a 10%increase in the burn rate compared with the standard propellant.The ignition delay for the nano-aluminium propellant was slightly shorter than that of the baseline propellant.Substantially increased wear rates were measured for the micro-aluminium propellant.The nano-aluminium propellant showed reduced wear rates compared with the micro-aluminium propellant but these were still substantially greater than those for the baseline propellant.展开更多
基金supported by the National Natural Scienceof China (No.52175208)Scientific Research and Technology Development Project of CNPC (No.2023ZZ11)+1 种基金Fundamental Research and Strategic Reserve Technology Research Fund Project of CNPC (No.2023DQ03-03)Study on Key Technologies of Production Increase and Transformation of Gulong Shale Oil (2021ZZ10-04)。
文摘Erosion wear is a common failure mode in the oil and gas industry.In the hydraulic fracturing,the fracturing pipes are not only in high-pressure working environment,but also suffer from the impact of the high-speed solid particles in the fracturing fluid.Beneath such complex conditions,the vulnerable components of the pipe system are prone to perforation or even burst accidents,which has become one of the most serious risks at the fracturing site.Unfortunately,it is not yet fully understood the erosion mechanism of pipe steel for hydraulic fracturing.Therefore,this article provides a detailed analysis of the erosion behavior of fracturing pipes under complex working conditions based on experiments and numerical simulations.Firstly,we conducted erosion experiments on AISI 4135 steel for fracturing pipes to investigate the erosion characteristics of the material.The effects of impact angle,flow velocity and applied stress on erosion wear were comprehensively considered.Then a particle impact dynamic model of erosion wear was developed based on the experimental parameters,and the evolution process of particle erosion under different impact angles,impact velocities and applied stress was analyzed.By combining the erosion characteristics,the micro-structure of the eroded area,and the micro-mechanics of erosion damage,the erosion mechanism of pipe steel under fracturing conditions was studied in detail for the first time.Under high-pressure operating conditions,it was demonstrated through experiments and numerical simulations that the size of the micro-defects in the eroded area increased as the applied stress increased,resulting in more severe erosion wear of fracturing pipes.
基金This research was funded by the National Natural Science Foundation of China(grant number 51675534).
文摘The sleeve sealing ball seat is one of the important components in the multistage fracturing process of horizontal wells.The erosion and wear of the surface will decrease the sealing performance of the fracturing ball and the ball seat.This leads to pressure leakage during the fracturing process and fracturing failure.In this paper,combined with the actual ball seat materials and working conditions during the fracturing process,the erosion tests of ductile iron and tungsten carbide materials under different erosion speeds,angles,and mortar concentrations are carried out.Then the erosion test results were analyzed by mathematical fitting,and a set of erosion models suitable for sliding sleeve setting ball seat materials were innovatively established.For the first time,this paper combines the erosion model obtained from the experiment and the computational fluid dynamics(CFD)with Fluent software to simulate the erosion of the ball seat.Based on the simulation results,the morphology of the sliding sleeve seat ball after erosion is predicted.Through analysis of the test and simulation results,it is showed that the erosion rate of tungsten carbide material is lower and the wear resistance is better under the condition of small angle erosion.This research can offer a strong basis for fracturing site selection,surface treatment methods,and prediction of failure time of ball seats.
基金funded by the Defence Science and Technology Laboratory(Dstl)part of the UK MoD,under the Hazard Modelling and Simulation task of the UK Energetics(UK-E)programme now consumed by the Weapons Science and Technology Centre(WSTC)
文摘Propellants containing micro-aluminium particles have been shown to produce faster burn rates than conventional gun propellants.However,they are also more abrasive than conventional propellants.Nano-material propellants have been reported to give similar benefits to micron-material propellants but without the disadvantage of increased abrasion.Tests were conducted to compare the burn rates,ignitability and wear rates of a propellant loaded with 0% aluminium,15% micro-aluminium and 15%nano-aluminium.Closed vessel tests showed a burn rate increase of 39% in the range 30-250 MPa,and 70% at low pressure(50-100MPa)for the nano-aluminium propellant compared with the baseline propellant.The micro-aluminium propellant showed only a 10%increase in the burn rate compared with the standard propellant.The ignition delay for the nano-aluminium propellant was slightly shorter than that of the baseline propellant.Substantially increased wear rates were measured for the micro-aluminium propellant.The nano-aluminium propellant showed reduced wear rates compared with the micro-aluminium propellant but these were still substantially greater than those for the baseline propellant.