In order to research the effects of built-in test(BIT) on the system and select BITand test strategy,the complex repairable systems with BITequipment are modeled and simulated by using Simulink.Based on the model,the ...In order to research the effects of built-in test(BIT) on the system and select BITand test strategy,the complex repairable systems with BITequipment are modeled and simulated by using Simulink.Based on the model,the influences of different built-in test equipments,maintenance time and error probabilities on the system usability are evaluated.The simulation results showthat they effect on the system differently.The simulation method of complex system based on Simulink provides a technique approach to research the effects of BITon the system and select BITand test strategy.展开更多
The situation is constructed when the tests are considered as events and the spare test equipments are considered as strategies. The model of grey situation decision for the test equipment selection and deployment (T...The situation is constructed when the tests are considered as events and the spare test equipments are considered as strategies. The model of grey situation decision for the test equipment selection and deployment (TESD) is founded. Through analyzing each decision objectives, their relative weights are calculated via analytic hierarchy process (AHP). The grey situation effect matrix under each objective is computed so that the comprehensive effect measure matrix can be obtained when all of the objectives are traded off by their weights. Finally, the decision-maker can select the optimal situations by the value of the measures and such situations form the overall concept for TESD. The paper combines the AHP with grey situation decision to select and deploy the test equipments optimally. Our experimental results show that the proposed method is effective and efficient.展开更多
With the continuous development of deep oil and gas,minerals,geothermal resources,and other resources,there are increasingly more stringent requirements for equipment.In particular,the ultra-highpressure dynamic seals...With the continuous development of deep oil and gas,minerals,geothermal resources,and other resources,there are increasingly more stringent requirements for equipment.In particular,the ultra-highpressure dynamic seals of deep mining device need to be developed.Therefore,considering the use of dynamic seals in unique deep mining environments,an ultra-high-pressure rotating combined dynamic seal was designed and developed and its sealing performance was experimentally measured and analyzed.The results show that the experimental device can operate stably under a pressure of up to150 MPa and a rotating speed of 76 r/min,and can also operate normally under a rotating speed of up to 140 r/min and a sealing pressure of 120 MPa.During the operation of the ultra-high-pressure rotating combined dynamic seal,the sealing ring does not show obvious damage,which vouches for its sealing performance.No leakage of flow and pressure was detected in the all seal structures within the sealing pressure range of 0-150 MPa.Therefore,the dynamic sealing performance of the device is intact under ultra-high-pressure conditions and can be applied in deep mining environments at a certain depth.The research and development of this device can aid future deep energy exploration and exploitation.展开更多
文摘In order to research the effects of built-in test(BIT) on the system and select BITand test strategy,the complex repairable systems with BITequipment are modeled and simulated by using Simulink.Based on the model,the influences of different built-in test equipments,maintenance time and error probabilities on the system usability are evaluated.The simulation results showthat they effect on the system differently.The simulation method of complex system based on Simulink provides a technique approach to research the effects of BITon the system and select BITand test strategy.
基金supported by the Advanced Research Project of a National Department of China under Grant No.51317040102
文摘The situation is constructed when the tests are considered as events and the spare test equipments are considered as strategies. The model of grey situation decision for the test equipment selection and deployment (TESD) is founded. Through analyzing each decision objectives, their relative weights are calculated via analytic hierarchy process (AHP). The grey situation effect matrix under each objective is computed so that the comprehensive effect measure matrix can be obtained when all of the objectives are traded off by their weights. Finally, the decision-maker can select the optimal situations by the value of the measures and such situations form the overall concept for TESD. The paper combines the AHP with grey situation decision to select and deploy the test equipments optimally. Our experimental results show that the proposed method is effective and efficient.
基金supported by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(Grant No.2019ZT08G315)the National Natural Science Foundation of China(Grant No.51827901)
文摘With the continuous development of deep oil and gas,minerals,geothermal resources,and other resources,there are increasingly more stringent requirements for equipment.In particular,the ultra-highpressure dynamic seals of deep mining device need to be developed.Therefore,considering the use of dynamic seals in unique deep mining environments,an ultra-high-pressure rotating combined dynamic seal was designed and developed and its sealing performance was experimentally measured and analyzed.The results show that the experimental device can operate stably under a pressure of up to150 MPa and a rotating speed of 76 r/min,and can also operate normally under a rotating speed of up to 140 r/min and a sealing pressure of 120 MPa.During the operation of the ultra-high-pressure rotating combined dynamic seal,the sealing ring does not show obvious damage,which vouches for its sealing performance.No leakage of flow and pressure was detected in the all seal structures within the sealing pressure range of 0-150 MPa.Therefore,the dynamic sealing performance of the device is intact under ultra-high-pressure conditions and can be applied in deep mining environments at a certain depth.The research and development of this device can aid future deep energy exploration and exploitation.