期刊文献+
共找到31,021篇文章
< 1 2 250 >
每页显示 20 50 100
Normalized Solutions of Nonlinear Choquard Equations with Nonconstant Potential
1
作者 LI Nan XU Liping 《应用数学》 北大核心 2025年第1期14-29,共16页
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ... In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods. 展开更多
关键词 Nonlinear Choquard equation Potential function Variational method Normalized solution
在线阅读 下载PDF
Two Second-Order Ecient Numerical Schemes for the Boussinesq Equations
2
作者 LIU Fang WANG Danxia ZHANG Jianwen 《应用数学》 北大核心 2025年第1期114-129,共16页
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t... In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes. 展开更多
关键词 Scalar auxiliary variable approach Pressure-correction method Fully decoupled Unconditional stability Boussinesq equations
在线阅读 下载PDF
Trajectory equations of interaction and evolution behaviors of a novel multi-soliton to a (2+1)-dimensional shallow water wave model
3
作者 Xi-Yu Tan Wei Tan 《Chinese Physics B》 2025年第4期238-248,共11页
Based on a new bilinear equation,we investigated some new dynamic behaviors of the(2+1)-dimensional shallow water wave model,such as hybridization behavior between different solitons,trajectory equations for lump coll... Based on a new bilinear equation,we investigated some new dynamic behaviors of the(2+1)-dimensional shallow water wave model,such as hybridization behavior between different solitons,trajectory equations for lump collisions,and evolution behavior of multi-breathers.Firstly,the N-soliton solution of Ito equation is studied,and some high-order breather waves can be obtained from the N-soliton solutions through paired-complexification of parameters.Secondly,the high-order lump solutions and the hybrid solutions are obtained by employing the long-wave limit method,and the motion velocity and trajectory equations of high-order lump waves are analyzed.Moreover,based on the trajectory equations of the higher-order lump solutions,we give and prove the trajectory theorem of 1-lump before and after interaction with nsoliton.Finally,we obtain some new lump solutions from the multi-solitons by constructing a new test function and using the parameter limit method.Meanwhile,some evolutionary behaviors of the obtained solutions are shown through a large number of three-dimensional graphs with different and appropriate parameters. 展开更多
关键词 Ito equation trajectory equation multi-solitons dynamic behavior
在线阅读 下载PDF
CLASSIFICATION OF SELF-SIMILAR SOLUTIONS OF THE DEGENERATE POLYTROPIC FILTRATION EQUATIONS
4
作者 Zhipeng LIU Shanming JI 《Acta Mathematica Scientia》 2025年第2期615-635,共21页
In this paper,we study the self-similar solutions of the degenerate diffusion equation ut-div(|▽u^(m)|^(p-2)▽u^(m))=0 of polytropic filtration diffusion in R^(N)×(0,±∞)or(R^(N)/{0})×(0,±∞)with ... In this paper,we study the self-similar solutions of the degenerate diffusion equation ut-div(|▽u^(m)|^(p-2)▽u^(m))=0 of polytropic filtration diffusion in R^(N)×(0,±∞)or(R^(N)/{0})×(0,±∞)with N≥1,m>0,p>1,such that m(p-1)>1.We give a clear classification of the self-similar solutions of the form u(x,t)=(βt)^(-α/β)((βt)^(-1/β)|x|)withα∈R andβ=α[m(p-1)-1]+p,regular or singular at the origin point.The existence and uniqueness of some solutions are established by the phase plane analysis method,and the asymptotic properties of the solutions near the origin and the infinity are also described.This paper extends the classical results of self-similar solutions for degeneratep-Laplace heat equation by Bidaut-Véron[Proc Royal Soc Edinburgh,2009,139:1-43]to the doubly nonlinear degenerate diffusion equations. 展开更多
关键词 self-similar solutions polytropic filtration equation degenerate diffusion equation doubly nonlinear diffusion
在线阅读 下载PDF
Normalized Solutions for p-Laplacian Schrödinger-Poisson Equations with L^(2)-Supercritical Growth
5
作者 LI Mingxue ZHANG Jiafeng 《数学理论与应用》 2025年第1期45-61,共17页
In this paper,we consider the p-Laplacian Schrödinger-Poisson equation with L^(2)-norm constraint-Δ_(p)u+|u|^(p-2)u+λu+(1/4π|x|*|u|^(2))u=|u|^(q-2)u,x∈R^(3),where 2≤p<3,5p/3<q<p*=3p/3-p,λ>0 is a... In this paper,we consider the p-Laplacian Schrödinger-Poisson equation with L^(2)-norm constraint-Δ_(p)u+|u|^(p-2)u+λu+(1/4π|x|*|u|^(2))u=|u|^(q-2)u,x∈R^(3),where 2≤p<3,5p/3<q<p*=3p/3-p,λ>0 is a Lagrange multiplier.We obtain the critical point of the corresponding functional of the problem on mass constraint by the variational method and the Mountain pass lemma,and then find a normalized solution to this equation. 展开更多
关键词 Normalized solution p-Laplacian equation Schrödinger-Poisson equation Mountain pass lemma
在线阅读 下载PDF
ON RADIALITY OF MINIMIZERS TO L^(2) SUPERCRITICAL SCHRODINGER POISSON EQUATIONS WITH GENERAL NONLINEARITIES
6
作者 Chengcheng WU Linjie SONG 《Acta Mathematica Scientia》 2025年第2期684-694,共11页
We investigate the radial symmetry of minimizers on the Pohozaev-Nehari manifold to the Schrodinger Poisson equation with a general nonlinearity f(u).Particularly,we allow that f is L^(2) supercritical.The main result... We investigate the radial symmetry of minimizers on the Pohozaev-Nehari manifold to the Schrodinger Poisson equation with a general nonlinearity f(u).Particularly,we allow that f is L^(2) supercritical.The main result shows that minimizers are radially symmetric modulo suitable translations. 展开更多
关键词 Schrodinger-Poisson equations radial symmetry Pohozaev-Nehari manifold
在线阅读 下载PDF
JERISON-LEE IDENTITIES AND SEMI-LINEAR SUBELLIPTIC EQUATIONS ON HEISENBERG GROUP
7
作者 Xinan MA Qianzhong OU Tian WU 《Acta Mathematica Scientia》 2025年第1期264-279,共16页
In the study of the extremal for Sobolev inequality on the Heisenberg group and the Cauchy-Riemann(CR)Yamabe problem,Jerison-Lee found a three-dimensional family of differential identities for critical exponent subell... In the study of the extremal for Sobolev inequality on the Heisenberg group and the Cauchy-Riemann(CR)Yamabe problem,Jerison-Lee found a three-dimensional family of differential identities for critical exponent subelliptic equation on Heisenberg groupℍn by using the computer in[5].They wanted to know whether there is a theoretical framework that would predict the existence and the structure of such formulae.With the help of dimension conservation and invariant tensors,we can answer the above question. 展开更多
关键词 Cauchy-Riemann Yamabe problem subelliptic equations Jerison-Lee identities
在线阅读 下载PDF
Some Modified Equations of the Sine-Hilbert Type
8
作者 闫铃娟 刘亚杰 胡星标 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期1-6,共6页
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based... Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived. 展开更多
关键词 BILINEAR equations equatION
在线阅读 下载PDF
Theoretical study of particle and energy balance equations in locally bounded plasmas
9
作者 Hyun-Su JUN Yat Fung TSANG +1 位作者 Jae Ok YOO Navab SINGH 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期89-98,共10页
In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all pl... In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls.However,in industrial plasma reactors for semiconductor manufacturing,the plasma is partially confined by internal reactor structures.We predict the effect of the open boundary area(A′_(L,eff))and ion escape velocity(u_(i))on electron temperature and density by developing new particle and energy balance equations.Theoretically,we found a low ion escape velocity(u_(i)/u_(B)≈0.2)and high open boundary area(A′_(L,eff)/A_(T,eff)≈0.6)to result in an approximately 38%increase in electron density and an 8%decrease in electron temperature compared to values in a fully bounded reactor.Additionally,we suggest that the velocity of ions passing through the open boundary should exceedω_(pi)λ_(De)under the condition E^(2)_(0)?(Φ/λ_(De))^(2). 展开更多
关键词 particle balance equation energy balance equation low temperature plasmas
在线阅读 下载PDF
THE STABILITY OF BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION AROUND THE HYDROSTATIC BALANCE
10
作者 Saiguo XU Zhong TAN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1466-1486,共21页
This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss... This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3). 展开更多
关键词 Boussinesq equations partial dissipation stability DECAY
在线阅读 下载PDF
THE SMOOTHING EFFECT IN SHARP GEVREY SPACE FOR THE SPATIALLY HOMOGENEOUS NON-CUTOFF BOLTZMANN EQUATIONS WITH A HARDPOTENTIAL
11
作者 刘吕桥 曾娟 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期455-473,共19页
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e... In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates. 展开更多
关键词 Boltzmann equation Gevrey regularity non-cutoff hard potential
在线阅读 下载PDF
ELLIPTIC EQUATIONS IN DIVERGENCE FORM WITH DISCONTINUOUS COEFFICIENTS IN DOMAINS WITH CORNERS
12
作者 Jun CHEN Xuemei DENG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1903-1915,共13页
We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across th... We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners. 展开更多
关键词 elliptic equations divergence form discontinuous coefficients corner regularity
在线阅读 下载PDF
ON THE STABILITY OF PERIODIC SOLUTIONS OF PIECEWISE SMOOTH PERIODIC DIFFERENTIAL EQUATIONS
13
作者 Maoan HAN Yan YE 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1524-1535,共12页
In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic sol... In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications. 展开更多
关键词 periodic solution Poincarémap periodic equation stability
在线阅读 下载PDF
THE GLOBAL EXISTENCE OF STRONG SOLUTIONS TO THERMOMECHANICAL CUCKER-SMALE-STOKES EQUATIONS IN THE WHOLE DOMAIN
14
作者 邹委员 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期887-908,共22页
We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k... We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data. 展开更多
关键词 thermomechanical Cucker-Smale model Stokes equations strong solutions global existence
在线阅读 下载PDF
Multi-soliton solutions of coupled Lakshmanan-Porsezian-Daniel equations with variable coefficients under nonzero boundary conditions
15
作者 赵会超 马雷诺 解西阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期137-152,共16页
This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the ... This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities. 展开更多
关键词 soliton Riemann-Hilbert problem non-zero boundary conditions coupled Lakshmanan-Porsezian-Daniel equation
在线阅读 下载PDF
GLOBAL UNIQUE SOLUTIONS FOR THE INCOMPRESSIBLE MHD EQUATIONS WITH VARIABLE DENSITY AND ELECTRICAL CONDUCTIVITY
16
作者 Xueli KE 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1747-1765,共19页
We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive co... We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution. 展开更多
关键词 inhomogeneous MHD equations electrical conductivity global unique solutions
在线阅读 下载PDF
NORMALIZED SOLUTIONS FOR THE GENERAL KIRCHHOFF TYPE EQUATIONS
17
作者 Wenmin LIU Xuexiu ZHONG Jinfang ZHOU 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1886-1902,共17页
In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constrain... In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constraint f_(R)^N u^2dx=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical. 展开更多
关键词 normalized solution Kirchhoff type equations general nonlinearities asymptotic behavior
在线阅读 下载PDF
THE EXACT MEROMORPHIC SOLUTIONS OF SOME NONLINEAR DIFFERENTIAL EQUATIONS
18
作者 刘慧芳 毛志强 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期103-114,共12页
We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Co... We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions. 展开更多
关键词 Nevanlinna theory nonlinear differential equations meromorphic functions entire functions
在线阅读 下载PDF
THE GLOBAL EXISTENCE AND ANALYTICITY OF A MILD SOLUTION TO THE 3D REGULARIZED MHD EQUATIONS
19
作者 肖存涛 邱华 姚正安 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期973-983,共11页
In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small in... In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution. 展开更多
关键词 regularized MHD equations fractional Laplacian global well-posedness ANALYTICITY decay rate
在线阅读 下载PDF
THE OPTIMAL LARGE TIME BEHAVIOR OF3D QUASILINEAR HYPERBOLIC EQUATIONS WITH NONLINEAR DAMPING
20
作者 王涵 张映辉 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1064-1095,共32页
We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third ord... We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third order spatial derivatives of the solution,which are the same as those of the heat equation,and in particular,are faster than ones of previous related works.Second,for well-chosen initial data,we also show that the lower optimal L^(2) convergence rate of the k(∈[0,3])-order spatial derivatives of the solution is(1+t)^(-(2+2k)/4).Therefore,our decay rates are optimal in this sense.The proofs are based on the Fourier splitting method,low-frequency and high-frequency decomposition,and delicate energy estimates. 展开更多
关键词 quasilinear hyperbolic equations large time behavior optimal decay rates
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部