Aiming to evaluate the reliability of phase-transition degrading systems,a generalized stochastic degradation model with phase transition is constructed,and the corresponding analytical reliability function is formula...Aiming to evaluate the reliability of phase-transition degrading systems,a generalized stochastic degradation model with phase transition is constructed,and the corresponding analytical reliability function is formulated under the concept of the first hitting time.The phase-varying stochastic property and the phase-varying nonlinearity are considered simultaneously in the proposed model.To capture the phase-varying stochastic pro-perty,a Wiener process is adopted to model the non-monotonous degradation phase,while a Gamma process is utilized to model the monotonous one.In addition,the phase-varying non-linearity is captured by different transformed time scale functions.To facilitate the practical application of the proposed model,identification of phase model type and estimation of model parameters are discussed,and the initial guesses for parameters optimization are also given.Based on the constructed model,two simulation studies are carried out to verify the analytical reliability function and analyze the influence of model misspecification.Finally,a practical case study is conducted for illustration.展开更多
High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production meth...High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.展开更多
基金This work was supported by the National Natural Science Foundation of China(11872085)the National Key Research and Development Program of China(2018YFF0216004).
文摘Aiming to evaluate the reliability of phase-transition degrading systems,a generalized stochastic degradation model with phase transition is constructed,and the corresponding analytical reliability function is formulated under the concept of the first hitting time.The phase-varying stochastic property and the phase-varying nonlinearity are considered simultaneously in the proposed model.To capture the phase-varying stochastic pro-perty,a Wiener process is adopted to model the non-monotonous degradation phase,while a Gamma process is utilized to model the monotonous one.In addition,the phase-varying non-linearity is captured by different transformed time scale functions.To facilitate the practical application of the proposed model,identification of phase model type and estimation of model parameters are discussed,and the initial guesses for parameters optimization are also given.Based on the constructed model,two simulation studies are carried out to verify the analytical reliability function and analyze the influence of model misspecification.Finally,a practical case study is conducted for illustration.
基金Natural Science Foundation of Shanghai(24ZR1400800)he Natural Science Foundation of China(U23A20685,52073058,91963204)+1 种基金the National Key R&D Program of China(2021YFB3701400)Shanghai Sailing Program(23YF1400200)。
文摘High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.