OBJECTIVE To evaluate whether ginsenoside Rb1 has antiepileptic effects on pen⁃tylenetetrazole(PTZ)-induced epileptic mice via intranasal therapeutic administration.METHODS Rb1 monoclonal antibody was used to observe ...OBJECTIVE To evaluate whether ginsenoside Rb1 has antiepileptic effects on pen⁃tylenetetrazole(PTZ)-induced epileptic mice via intranasal therapeutic administration.METHODS Rb1 monoclonal antibody was used to observe the distribution of Rb120 mg·kg-1 in mouse brain tissues under different administration routes and to explore the feasibility of intranasal Rb1.PTZ was injected intraperitoneally into healthy ICR mice every 48 hours to construct a tonic-clonic epileptic model.Then Rb120 or 40 mg·kg-1 or valproate 300 mg·kg-1 or saline was administered intranasally for 30 d,and PTZ was continued every five days to imitate occa⁃sional convulsions in the clinic.Racine scale(RCS)and wireless electroencephalogram(EEG)monitoring were used to assess the presence and severity of seizure.Immunofluorescence(IF)was performed after drug treatment to evalu⁃ate the effect of Rb1 on brain neuron,microglia and astrocyte in epileptic mice.RESULTS Rb1 had specific binding with anti-Rb1 in the brain under different administration routes,and intrana⁃sal Rb1 was able to enter the brain and play a therapeutic role(P<0.01).PTZ-injured mice pre⁃sented body mass loss,higher seizure stage and shorter seizure latency.At the same time,epilep⁃tic waves,mainly spikes,were detected by wire⁃less EEG.Compared with PTZ group,intranasal Rb1 increased mice weight(P<0.01)and seizure latency(P<0.05),reduced seizure stage(P<0.01)and EEG spikes.In addition,Rb1 significantly reduced neuron loss(P<0.01)indicated by NeuN staining and decreased the number of acti⁃vated microglia(P<0.01)indicated by Iba-1 staining in the cortex and CA1 area of hippocam⁃pus.Moreover,Rb1 reduced the decrease of GLT-1 and GS expression(P<0.05)induced by PTZ.CONCLUTION Intranasal Rb1 has anti-epi⁃leptic effects on PTZ mice.Moreover,Intranasal Rb1 affects the functions of neurons,astrocytes and microglia through regulating the expression of GLT and GS in astrocytes,which may be related to its anti-epileptic effect.展开更多
脑电信号(Electroencephalogram,EEG)作为一种客观直接的信息源,被广泛应用于情绪识别任务。为了提取脑电信号的空间连通特征所隐含的信息,提出了一种基于空间连通特征和残差卷积神经网络(Spatial connectivity features and residual c...脑电信号(Electroencephalogram,EEG)作为一种客观直接的信息源,被广泛应用于情绪识别任务。为了提取脑电信号的空间连通特征所隐含的信息,提出了一种基于空间连通特征和残差卷积神经网络(Spatial connectivity features and residual convolutional neural network,SCF-RCNN)模型的情绪识别方法。该方法从经预处理的脑电信号中提取皮尔逊相关系数(Pearson correlation coefficient,PCC)、锁相值(Phase-locked value,PLV)和互信息(Mutual information,MI)作为空间连通特征,使用包含两个残差模块的卷积神经网络模型来提取情感信息。在SEED数据集上的实验结果显示,PLV构造的连接矩阵与脑电情绪关系更为密切,其平均准确率可达93.38%,标准差为3.35%。与传统算法相比,SCF-RCNN在情绪识别领域的分类任务中表现更为优越,表明该方法在情绪识别领域具有重要的应用潜力。展开更多
文摘OBJECTIVE To evaluate whether ginsenoside Rb1 has antiepileptic effects on pen⁃tylenetetrazole(PTZ)-induced epileptic mice via intranasal therapeutic administration.METHODS Rb1 monoclonal antibody was used to observe the distribution of Rb120 mg·kg-1 in mouse brain tissues under different administration routes and to explore the feasibility of intranasal Rb1.PTZ was injected intraperitoneally into healthy ICR mice every 48 hours to construct a tonic-clonic epileptic model.Then Rb120 or 40 mg·kg-1 or valproate 300 mg·kg-1 or saline was administered intranasally for 30 d,and PTZ was continued every five days to imitate occa⁃sional convulsions in the clinic.Racine scale(RCS)and wireless electroencephalogram(EEG)monitoring were used to assess the presence and severity of seizure.Immunofluorescence(IF)was performed after drug treatment to evalu⁃ate the effect of Rb1 on brain neuron,microglia and astrocyte in epileptic mice.RESULTS Rb1 had specific binding with anti-Rb1 in the brain under different administration routes,and intrana⁃sal Rb1 was able to enter the brain and play a therapeutic role(P<0.01).PTZ-injured mice pre⁃sented body mass loss,higher seizure stage and shorter seizure latency.At the same time,epilep⁃tic waves,mainly spikes,were detected by wire⁃less EEG.Compared with PTZ group,intranasal Rb1 increased mice weight(P<0.01)and seizure latency(P<0.05),reduced seizure stage(P<0.01)and EEG spikes.In addition,Rb1 significantly reduced neuron loss(P<0.01)indicated by NeuN staining and decreased the number of acti⁃vated microglia(P<0.01)indicated by Iba-1 staining in the cortex and CA1 area of hippocam⁃pus.Moreover,Rb1 reduced the decrease of GLT-1 and GS expression(P<0.05)induced by PTZ.CONCLUTION Intranasal Rb1 has anti-epi⁃leptic effects on PTZ mice.Moreover,Intranasal Rb1 affects the functions of neurons,astrocytes and microglia through regulating the expression of GLT and GS in astrocytes,which may be related to its anti-epileptic effect.