This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the t...Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring.展开更多
Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extens...Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.展开更多
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistan...The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistance,high temperature strength and corrosion resistance.These alloys are manufactured by the equal mixing or larger proportions of five or more alloying elements.HEAs exhibit superior mechanical performance compared to traditional engineering alloys because of the extensive alloying composition and higher entropy of mixing.Solid state welding(SSW)techniques such as friction stir welding(FSW),rotary friction welding(RFW),diffusion bonding(DB)and explosive welding(EW)have been efficiently deployed for improving the microstructural integrity and mechanical properties of welded HEA joints.The HEA interlayers revealed greater potential in supressing the formation of deleterious intermetallic phases and maximizing the mechanical properties of HEAs joints.The similar and dissimilar joining of HEAs has been manifested to be viable for HEA systems which further expands their industrial applications.Thus,the main objective of this review paper is to present a critical review of current state of research,challenges and opportunities and main directions in SSW of HEAs mainly CoCrFeNiMn and Al_xCoCrFeNi alloys.The state of the art of problems,progress and future outlook in SSW of HEAs are critically reviewed by considering the formation of phases,microstructural evolution and mechanical properties of HEAs joints.展开更多
Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th...Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.展开更多
In order to measure the uncertain information of a type- 2 intuitionistic fuzzy set (T21FS), an entropy measure of T21FS is presented by using the constructive principles. The proposed entropy measure is also proved...In order to measure the uncertain information of a type- 2 intuitionistic fuzzy set (T21FS), an entropy measure of T21FS is presented by using the constructive principles. The proposed entropy measure is also proved to satisfy all of the constructive principles. Further, a novel concept of the type-2 triangular in- tuitionistic trapezoidal fuzzy set (T2TITrFS) is developed, and a geometric interpretation of the T2TITrFS is given to comprehend it completely or correctly in a more intuitive way. To deal with a more general uncertain complex system, the constructive principles of an entropy measure of T2TITrFS are therefore proposed on the basis of the axiomatic definition of the type-2 intuitionisic fuzzy entropy measure. This paper elicits a formula of type-2 triangular intuitionistic trapezoidal fuzzy entropy and verifies that it does sa- tisfy the constructive principles. Two examples are given to show the efficiency of the proposed entropy of T2TITrFS in describing the uncertainty of the type-2 intuitionistic fuzzy information and illustrate its application in type-2 triangular intuitionistic trapezodial fuzzy decision making problems.展开更多
In view of the fact that traditional air target threat assessment methods are difficult to reflect the combat characteristics of uncertain, dynamic and hybrid formation, an algorithm is proposed to solve the multi-tar...In view of the fact that traditional air target threat assessment methods are difficult to reflect the combat characteristics of uncertain, dynamic and hybrid formation, an algorithm is proposed to solve the multi-target threat assessment problems. The target attribute weight is calculated by the intuitionistic fuzzy entropy(IFE) algorithm and the time series weight is gained by the Poisson distribution method based on multi-times data. Finally,assessment and sequencing of the air multi-target threat model based on IFE and dynamic Vlse Kriterijumska Optimizacija I Kompromisno Resenje(VIKOR) is established with an example which indicates that the method is reasonable and effective.展开更多
Rockburst is a dynamic phenomenon accompanied by acoustic emission(AE)activities.It is difficult to predict rockburst accurately.Based on the fast Fourier transform(FFT)method and the information entropy theory,the ev...Rockburst is a dynamic phenomenon accompanied by acoustic emission(AE)activities.It is difficult to predict rockburst accurately.Based on the fast Fourier transform(FFT)method and the information entropy theory,the evolution model of dominant frequency entropy was established.The AE energy,frequency and stress were synthetically considered to predict rockburst.Under the triaxial and the single-face unloading tests,the relationship between AE energy and the development of internal cracks was analyzed.Using the FFT method,the distribution characteristics of AE dominant frequency values were obtained.Based on the information entropy theory,the dominant frequencies evolved patterns were ascertained.It was observed that the evolution models of the dominant frequency entropy were nearly the same and shared a characteristic“undulation-decrease-rise-sharp decrease”pattern.Results show that AE energy will be released suddenly before rockburst.The density of intermediate frequency increased prior to rockburst.The dominant frequency entropy reached a relative maximum value before rockburst,and then decreased sharply.These features could be used as a precursory information for predicting rockburst.The proposed relative maximum value could be as a key point to predict rockburst.This is a meaningful attempt on predicting rockburst.展开更多
According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferen...According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferences and the consistency of expert's collating vectors,but they lack of the measure of information similarity.So it may occur that although the collating vector is similar to the group consensus,information uncertainty is great of a certain expert.However,it is clustered to a larger group and given a high weight.For this,a new aggregation method based on entropy and cluster analysis in group decision-making process is provided,in which the collating vectors are classified with information similarity coefficient,and the experts' weights are determined according to the result of classification,the entropy of collating vectors and the judgment matrix consistency.Finally,a numerical example shows that the method is feasible and effective.展开更多
Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined compo...Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE.展开更多
Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual charac...Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.展开更多
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
基金Project(51975169)supported by the National Natural Science Foundation of ChinaProject(LH2022E085)supported by the Natural Science Foundation of Heilongjiang Province,China。
文摘Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring.
基金Project(52175445)supported by the National Natural Science Foundation of ChinaProject(2022JJ30743)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2023GK2024)supported by the Key Research and Development Program of Hunan Province,ChinaProject(2023ZZTS0391)supported by the Fundamental Research Funds for the Central Universities of China。
文摘Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
基金financially supported by Ministry of Science and Higher Education of the Russian Federation(Grant No.FENU-2023-0013)。
文摘The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistance,high temperature strength and corrosion resistance.These alloys are manufactured by the equal mixing or larger proportions of five or more alloying elements.HEAs exhibit superior mechanical performance compared to traditional engineering alloys because of the extensive alloying composition and higher entropy of mixing.Solid state welding(SSW)techniques such as friction stir welding(FSW),rotary friction welding(RFW),diffusion bonding(DB)and explosive welding(EW)have been efficiently deployed for improving the microstructural integrity and mechanical properties of welded HEA joints.The HEA interlayers revealed greater potential in supressing the formation of deleterious intermetallic phases and maximizing the mechanical properties of HEAs joints.The similar and dissimilar joining of HEAs has been manifested to be viable for HEA systems which further expands their industrial applications.Thus,the main objective of this review paper is to present a critical review of current state of research,challenges and opportunities and main directions in SSW of HEAs mainly CoCrFeNiMn and Al_xCoCrFeNi alloys.The state of the art of problems,progress and future outlook in SSW of HEAs are critically reviewed by considering the formation of phases,microstructural evolution and mechanical properties of HEAs joints.
基金supported by the Preparation and Characterization of Fogging Agents,Cooperative Project of China(Grant No.1900030040)Preparation and Test of Fogging Agents,Cooperative Project of China(Grant No.2200030085)。
文摘Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.
基金supported by the National Natural Science Foundation of China(7137115670971017)the Research Grants Council of the Hong Kong Special Administrative Region,China(City U112111)
文摘In order to measure the uncertain information of a type- 2 intuitionistic fuzzy set (T21FS), an entropy measure of T21FS is presented by using the constructive principles. The proposed entropy measure is also proved to satisfy all of the constructive principles. Further, a novel concept of the type-2 triangular in- tuitionistic trapezoidal fuzzy set (T2TITrFS) is developed, and a geometric interpretation of the T2TITrFS is given to comprehend it completely or correctly in a more intuitive way. To deal with a more general uncertain complex system, the constructive principles of an entropy measure of T2TITrFS are therefore proposed on the basis of the axiomatic definition of the type-2 intuitionisic fuzzy entropy measure. This paper elicits a formula of type-2 triangular intuitionistic trapezoidal fuzzy entropy and verifies that it does sa- tisfy the constructive principles. Two examples are given to show the efficiency of the proposed entropy of T2TITrFS in describing the uncertainty of the type-2 intuitionistic fuzzy information and illustrate its application in type-2 triangular intuitionistic trapezodial fuzzy decision making problems.
基金Supported by the National Natural Science Foundation of China (10871157)Specialized Research Fund for the Doctoral Program of Higher Education (200806990032)
基金supported by the National Natural Science Foundation of China(61401363)the Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation(20155153034)+1 种基金the Innovative Talents Promotion Plan in Shaanxi Province(2017KJXX-15)the Fundamental Research Funds for the Central Universities(3102016AXXX005)
文摘In view of the fact that traditional air target threat assessment methods are difficult to reflect the combat characteristics of uncertain, dynamic and hybrid formation, an algorithm is proposed to solve the multi-target threat assessment problems. The target attribute weight is calculated by the intuitionistic fuzzy entropy(IFE) algorithm and the time series weight is gained by the Poisson distribution method based on multi-times data. Finally,assessment and sequencing of the air multi-target threat model based on IFE and dynamic Vlse Kriterijumska Optimizacija I Kompromisno Resenje(VIKOR) is established with an example which indicates that the method is reasonable and effective.
基金Project(2017YFC0804201)supported by the National Key Research and Development Program of ChinaProject(51574246)supported by the National Natural Science Foundation of China+1 种基金Project(2011QZ01)supported by Fundamental Research Funds for the Central Universities,ChinaProject(C201911362)supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates,China。
文摘Rockburst is a dynamic phenomenon accompanied by acoustic emission(AE)activities.It is difficult to predict rockburst accurately.Based on the fast Fourier transform(FFT)method and the information entropy theory,the evolution model of dominant frequency entropy was established.The AE energy,frequency and stress were synthetically considered to predict rockburst.Under the triaxial and the single-face unloading tests,the relationship between AE energy and the development of internal cracks was analyzed.Using the FFT method,the distribution characteristics of AE dominant frequency values were obtained.Based on the information entropy theory,the dominant frequencies evolved patterns were ascertained.It was observed that the evolution models of the dominant frequency entropy were nearly the same and shared a characteristic“undulation-decrease-rise-sharp decrease”pattern.Results show that AE energy will be released suddenly before rockburst.The density of intermediate frequency increased prior to rockburst.The dominant frequency entropy reached a relative maximum value before rockburst,and then decreased sharply.These features could be used as a precursory information for predicting rockburst.The proposed relative maximum value could be as a key point to predict rockburst.This is a meaningful attempt on predicting rockburst.
文摘According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferences and the consistency of expert's collating vectors,but they lack of the measure of information similarity.So it may occur that although the collating vector is similar to the group consensus,information uncertainty is great of a certain expert.However,it is clustered to a larger group and given a high weight.For this,a new aggregation method based on entropy and cluster analysis in group decision-making process is provided,in which the collating vectors are classified with information similarity coefficient,and the experts' weights are determined according to the result of classification,the entropy of collating vectors and the judgment matrix consistency.Finally,a numerical example shows that the method is feasible and effective.
基金Projects(City U 11201315,T32-101/15-R)supported by the Research Grants Council of the Hong Kong Special Administrative Region,China
文摘Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE.
基金Project(50934006) supported by the National Natural Science Foundation of ChinaProject(2010CB732004) supported by the National Basic Research Program of China+1 种基金Project(2009ssxt230) supported by the Central South University Innovation Fund,ChinaProject(CX2011B119) supported by the Graduated Students’Research and Innovation Fund of Hunan Province,China
文摘Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.