土壤参数是模拟和计算土壤含水量等状态数据的重要因子,对农业管理及其研究具有重要意义。然而,由于土壤系统变饱和与非线性特征,现有主流数据同化方法估计土壤参数时仍面临挑战。采用基于深度学习的参数估计方法(Parameter Estimator w...土壤参数是模拟和计算土壤含水量等状态数据的重要因子,对农业管理及其研究具有重要意义。然而,由于土壤系统变饱和与非线性特征,现有主流数据同化方法估计土壤参数时仍面临挑战。采用基于深度学习的参数估计方法(Parameter Estimator with Deep Learning,PEDL)对土壤参数进行反演估计,通过两个理想算例验证PEDL估计土壤参数的效果,并与集合平滑多数据同化方法(Ensemble Smoother with Multiple Data Assimilation,ESMDA)进行了系统比较。研究结果表明:PEDL能成功识别观测数据与待估参数之间的非线性关系,无需迭代即可逼近土壤参数的真实值;PEDL获得的参数后验分布范围相较于ESMDA明显缩小;与迭代5次的ESMDA方法相比,PEDL估计结果不确定性更低,且总调用次数更少。该研究有助于提高土壤参数估计的精度,可有效提升土壤状态及相关农业模型预测可靠性。展开更多
针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance...针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance tomography,ERT)法采集的ERT观测数据,实现对污染源源强和渗透系数场的联合反演。以此为基础设计3组数值算例,比较不同类型观测数据对反演精度的影响。研究结果表明:融合ERT数据的ES-MDA算法对模型参数的反演精度更高,并且将ERT数据和传统的质量浓度与水头观测数据相结合,能进一步优化反演结果。展开更多
文摘土壤参数是模拟和计算土壤含水量等状态数据的重要因子,对农业管理及其研究具有重要意义。然而,由于土壤系统变饱和与非线性特征,现有主流数据同化方法估计土壤参数时仍面临挑战。采用基于深度学习的参数估计方法(Parameter Estimator with Deep Learning,PEDL)对土壤参数进行反演估计,通过两个理想算例验证PEDL估计土壤参数的效果,并与集合平滑多数据同化方法(Ensemble Smoother with Multiple Data Assimilation,ESMDA)进行了系统比较。研究结果表明:PEDL能成功识别观测数据与待估参数之间的非线性关系,无需迭代即可逼近土壤参数的真实值;PEDL获得的参数后验分布范围相较于ESMDA明显缩小;与迭代5次的ESMDA方法相比,PEDL估计结果不确定性更低,且总调用次数更少。该研究有助于提高土壤参数估计的精度,可有效提升土壤状态及相关农业模型预测可靠性。
文摘针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance tomography,ERT)法采集的ERT观测数据,实现对污染源源强和渗透系数场的联合反演。以此为基础设计3组数值算例,比较不同类型观测数据对反演精度的影响。研究结果表明:融合ERT数据的ES-MDA算法对模型参数的反演精度更高,并且将ERT数据和传统的质量浓度与水头观测数据相结合,能进一步优化反演结果。