期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于HOSVD局部重组的利噪抑噪经验模式分解及应用
1
作者
袁静
罗亮洁
+2 位作者
翁艺航
宋志天
许冲
《上海航天(中英文)》
CSCD
2022年第6期51-58,共8页
及时准确地识别航天机构萌生和发展的损伤故障特征信息,可为机构故障诊断评估、科学任务调整以及未来在轨维修提供科学决策依据。集成噪声重构经验模式分解(ENEMD)及其衍生方法都是基于噪声利用机制以原信号中估计噪声改善模式混淆并实...
及时准确地识别航天机构萌生和发展的损伤故障特征信息,可为机构故障诊断评估、科学任务调整以及未来在轨维修提供科学决策依据。集成噪声重构经验模式分解(ENEMD)及其衍生方法都是基于噪声利用机制以原信号中估计噪声改善模式混淆并实现信号降噪。然而,该方法中奇异值拐点难以获取、阈值处理中噪声不连续等带来的噪声估计偏差,将降低微弱特征提取准确性。为此,提出一种基于高阶奇异值分解(HOSVD)局部重组的噪声估计技术。研究基于滑动窗截断和Hankel矩阵相结合的张量构建,然后将奇异值曲率谱上的最大峰值点作为合理奇异阶,最后根据选取的奇异阶重构张量分解模型得到所需的估计噪声分量。在此基础上,将HOSVD局部重组引入ENEMD方法中,提出利噪抑噪经验模式分解方法。该方法可进一步提高微弱噪声估计精确度,实现对航天机构损伤微弱特征的增强提取。仿真分析和某航天轴承试验案例验证了该方法在损伤微弱特征提取和识别上具有实用性与有效性。
展开更多
关键词
集成噪声重构经验模式分解(
enemd
)
张量
高阶奇异值分解(HOSVD)
噪声估计
航天故障诊断
在线阅读
下载PDF
职称材料
题名
基于HOSVD局部重组的利噪抑噪经验模式分解及应用
1
作者
袁静
罗亮洁
翁艺航
宋志天
许冲
机构
上海理工大学机械工程学院
上海航天电子通讯设备研究所
出处
《上海航天(中英文)》
CSCD
2022年第6期51-58,共8页
基金
国家自然科学基金(51975377、52005335)
上海市青年科技英才扬帆计划(21YF1430600)
上海航天科技创新基金(SAST2019-100)。
文摘
及时准确地识别航天机构萌生和发展的损伤故障特征信息,可为机构故障诊断评估、科学任务调整以及未来在轨维修提供科学决策依据。集成噪声重构经验模式分解(ENEMD)及其衍生方法都是基于噪声利用机制以原信号中估计噪声改善模式混淆并实现信号降噪。然而,该方法中奇异值拐点难以获取、阈值处理中噪声不连续等带来的噪声估计偏差,将降低微弱特征提取准确性。为此,提出一种基于高阶奇异值分解(HOSVD)局部重组的噪声估计技术。研究基于滑动窗截断和Hankel矩阵相结合的张量构建,然后将奇异值曲率谱上的最大峰值点作为合理奇异阶,最后根据选取的奇异阶重构张量分解模型得到所需的估计噪声分量。在此基础上,将HOSVD局部重组引入ENEMD方法中,提出利噪抑噪经验模式分解方法。该方法可进一步提高微弱噪声估计精确度,实现对航天机构损伤微弱特征的增强提取。仿真分析和某航天轴承试验案例验证了该方法在损伤微弱特征提取和识别上具有实用性与有效性。
关键词
集成噪声重构经验模式分解(
enemd
)
张量
高阶奇异值分解(HOSVD)
噪声估计
航天故障诊断
Keywords
ensemble
noise-reconstructedempirical
mode
decomposition
(
enemd
)
tensor
higher-order singular value
decomposition
(HOSVD)
noise estimation
space fault diagnosis
分类号
TH17 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于HOSVD局部重组的利噪抑噪经验模式分解及应用
袁静
罗亮洁
翁艺航
宋志天
许冲
《上海航天(中英文)》
CSCD
2022
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部