期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:9
1
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(EMD) ensemble EMD(EEMD) Complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
基于EEMEMD改进的HHT方法及其在谐波检测应用中的研究
2
作者 张展 张云鹏 +2 位作者 杨晋 扶铸 郭浩杰 《电力系统及其自动化学报》 北大核心 2025年第5期40-51,共12页
针对希尔伯特-黄变换(Hilbert-Huang transform,HHT)方法在谐波检测时易受噪声或突变信号影响,出现模态混叠、虚假分量以及端点效应等影响特征信息精度问题,提出一种基于总体包络均值经验模态分解(ensemble envelope mean empirical mod... 针对希尔伯特-黄变换(Hilbert-Huang transform,HHT)方法在谐波检测时易受噪声或突变信号影响,出现模态混叠、虚假分量以及端点效应等影响特征信息精度问题,提出一种基于总体包络均值经验模态分解(ensemble envelope mean empirical mode decomposition,EEMEMD)改进的HHT谐波检测方法。首先采用基于Wasserstein寻优-线性权重延拓改进的波形匹配延拓法对EEMEMD中内嵌的经验模态分解(empirical mode decomposition,EMD)存在的端点效应进行预处理;然后利用EEMEMD方法通过计算总体包络均值间接获取固有模态函数的特性,将谐波信号分解为一系列固有模态函数分量;最后通过希尔伯特变换提取谐波分量的幅值和频率特征信息。仿真实验和对比结果表明,改进的HHT方法显著改善了EMD固有的局限性,在噪声或突变信号的谐波检测中有着很高的检测精度。 展开更多
关键词 谐波检测 总体包络均值经验模态分解 端点效应 希尔伯特变换
在线阅读 下载PDF
改进EEMD的冲击试验机冲击响应谱修正方法
3
作者 郑帅朋 王鹏 +1 位作者 张春辉 闫明 《噪声与振动控制》 北大核心 2025年第4期170-175,251,共7页
由冲击加速度信号计算得到的冲击响应谱是表征冲击环境的重要指标,但加速度传感器受强载荷作用会产生趋势项误差,双波冲击试验机的低频谱线会发生严重漂移。为还原真实冲击环境,使用集合经验模态分解法(EEMD)对加速度信号进行分解,并提... 由冲击加速度信号计算得到的冲击响应谱是表征冲击环境的重要指标,但加速度传感器受强载荷作用会产生趋势项误差,双波冲击试验机的低频谱线会发生严重漂移。为还原真实冲击环境,使用集合经验模态分解法(EEMD)对加速度信号进行分解,并提取各本征模态函数(IMF)出现峰值的时刻;在此基础上,基于K-均值聚类对各峰值时刻进行分类,确定重构信号所需的有效IMF分量,并结合峰度系数进一步判断所选有效IMF分量的合理性;最后使用重构加速度信号计算冲击响应谱,并通过低频段谱线斜率验证修正效果。研究结果表明:修正后的低频冲击响应谱平均斜率由-9.359 dB/oct提升到5.658 dB/oct,与标准斜率的误差为5.7%。EEMD修正方法能够有效还原冲击试验机真实冲击环境,可为舰载设备抗冲击评估提供重要参考。 展开更多
关键词 振动与波 冲击试验机 冲击响应谱 集合经验模态分解 K-均值聚类 峰度系数
在线阅读 下载PDF
联合CEF-MOMEDA的风机高速端轴承潜隐性故障敏感信息提取方法
4
作者 蔡敏 张强 +2 位作者 秦波 张海平 罗权毅 《机电工程》 北大核心 2025年第8期1428-1439,共12页
在大数据驱动的MW级半直驱风电机组滚动轴承服役期的状态智能辨识中,针对输入样本“质量差”致使所构建模型识别率低这一问题,提出了一种联合相关能量波动(CEF)评价准则与多点最优最小熵解卷积(MOMEDA)的潜隐性故障敏感信息提取方法。首... 在大数据驱动的MW级半直驱风电机组滚动轴承服役期的状态智能辨识中,针对输入样本“质量差”致使所构建模型识别率低这一问题,提出了一种联合相关能量波动(CEF)评价准则与多点最优最小熵解卷积(MOMEDA)的潜隐性故障敏感信息提取方法。首先,将拾取的振动数据由变分模态分解为若干个表征原数据不同成分的本征模分量;然后,根据上述分量能量的变化,量化、评估所包含的潜隐性故障占比,筛选并提取敏感成分后对故障信号进行了重构;接着,利用多点最优最小熵解卷积对重构后的数据进行了有效成分增强提取;最后,将上述能量波动评价准则与多点最优最小熵解卷积联合提取的敏感信息数据作为深度置信网络(DBN)的输入,构建了滚动轴承状态智能辨识模型,采用现场实验与凯斯西储大学(CWRU)数据集对CEF-MOMEDA的方法进行了验证。研究结果表明:基于CEF-MOMEDA-DBN的模型在风机滚动轴承诊断中的故障识别率更高;在凯斯西储大学数据集上,与集合经验模态分解(EEMD)、局部均值分解(LMD)相比,CEF-MOMEDA方法联合能量波动准则提取敏感信息数据并作为智能辨识模型的输入后,故障识别率分别提高了2.5%和1.25%。该方法能够有效提高故障识别的准确率,具有更强的实用性和泛化性。 展开更多
关键词 MW级半直驱风电机组 滚动轴承故障诊断 敏感成分联合提取 相关能量波动 多点最优最小熵解卷积 深度置信网络 集合经验模态分解 局部均值分解
在线阅读 下载PDF
基于CEEMDAN-VMD-PSO-LSTM模型的桥梁挠度预测 被引量:4
5
作者 郭永刚 张美霞 +2 位作者 王凯 刘立明 陈卫明 《安全与环境工程》 CAS CSCD 北大核心 2024年第3期150-159,共10页
针对桥梁运行阶段的健康状态监测,构建了CEEMDAN-VMD-PSO-LSTM模型对桥梁挠度进行预测。该模型主要分为二次模态分解平稳化、粒子群优化(PSO)算法和长短期记忆(LSTM)网络预测三大模块,共有5个步骤:①利用自适应噪声完备集合经验模态分解... 针对桥梁运行阶段的健康状态监测,构建了CEEMDAN-VMD-PSO-LSTM模型对桥梁挠度进行预测。该模型主要分为二次模态分解平稳化、粒子群优化(PSO)算法和长短期记忆(LSTM)网络预测三大模块,共有5个步骤:①利用自适应噪声完备集合经验模态分解(CEEMDAN)算法对桥梁原始挠度序列进行初次模态分解,分解为若干本征模态分解函数(IMF);②使用样本熵(SampEn/SE)计算各IMF分量的复杂度,并通过K-means聚类为高频、中频和低频3个IMF分量;③通过变分模态分解(VMD)算法对高频IMF分量进行二次模态分解;④分别对各个IMF分量通过PSO算法得出LSTM最优超参数组合;⑤将各最优超参数分别代入LSTM模型进行训练,并将各预测结果融合为最终的预测结果。结果表明:该预测方法具有最高的预测精度,为智慧桥梁的安全监测监控提供了新的技术方法。 展开更多
关键词 桥梁挠度预测 自适应噪声完备集合经验模态分解 变分模态分解 样本熵 K-meanS聚类 粒子群优化 长短期记忆网络
在线阅读 下载PDF
基于集合经验模态分解和排列熵的核电厂信号降噪研究 被引量:1
6
作者 王雨辰 李鼎 +1 位作者 胡玥 孙晨雨 《核科学与工程》 CAS CSCD 北大核心 2024年第1期98-107,共10页
本文提出了一种基于集合经验模态分解和排列熵的电站信号降噪方法。该方法流程如下,首先,采用集合经验模态分解对电站典型实测信号进行了分解,获得对应的本征模态分量。其次,采用排列熵对本征模态分量进行混沌度的定量评价,从而实现实... 本文提出了一种基于集合经验模态分解和排列熵的电站信号降噪方法。该方法流程如下,首先,采用集合经验模态分解对电站典型实测信号进行了分解,获得对应的本征模态分量。其次,采用排列熵对本征模态分量进行混沌度的定量评价,从而实现实测信号中的有用信号和噪声信号的区分。对于后者,采用改进的小波软阈值降噪法进行降噪。最后,根据排列熵筛分后的有用信号和改进的小波软阈值降噪后的噪声信号进行重构,得到降噪后的信号。另外,本文也采用了主流的经验模态分解和局部均值分解对该信号进行了处理,并将分析结果进行对比。对比结果表明,基于本文所提方法得到的降噪后信号排列熵较小,表明降噪效果要优于以上两种方法。 展开更多
关键词 信号降噪 经验模态分解 局部均值分解 集合经验模态分解 排列熵
在线阅读 下载PDF
云平台下并行总体经验模态分解局部放电信号去噪方法 被引量:20
7
作者 宋亚奇 周国亮 +2 位作者 朱永利 李莉 王德文 《电工技术学报》 EI CSCD 北大核心 2015年第18期213-222,共10页
信号去噪是对输变电设备进行在线监测和诊断时首要解决的问题。鉴于总体经验模态分解(EEMD)方法对局部放电信号进行去噪的优势,设计了基于Map Reduce模型的并行化EEMD算法(MR-EEMD),利用云平台提高算法的计算效率。在对分段包络线进行... 信号去噪是对输变电设备进行在线监测和诊断时首要解决的问题。鉴于总体经验模态分解(EEMD)方法对局部放电信号进行去噪的优势,设计了基于Map Reduce模型的并行化EEMD算法(MR-EEMD),利用云平台提高算法的计算效率。在对分段包络线进行重构时,针对矩形窗的固有缺陷,提出了基于局部平稳度的自适应分段包络线重构算法(LF-ASER)进行分段边界的补偿处理,使重构的包络线误差减小到给定阈值范围内。实验结果表明MR-EEMD算法相对于EEMD性能提升显著,适合处理变压器的局部放电等高采样率信号,同时保持了EEMD去噪效果,并获得较高的可扩展性和加速比。 展开更多
关键词 局部放电 信号去噪 总体经验模态分解 MAPREDUCE 包络线重构
在线阅读 下载PDF
基于EEMD形态谱和KFCM聚类集成的滚动轴承故障诊断方法研究 被引量:27
8
作者 郑直 姜万录 +2 位作者 胡浩松 朱勇 李扬 《振动工程学报》 EI CSCD 北大核心 2015年第2期324-330,共7页
针对滚动轴承的故障诊断问题,提出了一种基于集总经验模态分解(EEMD)、形态谱特征提取和核模糊C均值聚类(KFCMC)集成的故障诊断新方法。首先,对实测的滚动轴承振动信号进行EEMD分解,得到若干个代表不同振动模态的内禀模态函数(IMF);其次... 针对滚动轴承的故障诊断问题,提出了一种基于集总经验模态分解(EEMD)、形态谱特征提取和核模糊C均值聚类(KFCMC)集成的故障诊断新方法。首先,对实测的滚动轴承振动信号进行EEMD分解,得到若干个代表不同振动模态的内禀模态函数(IMF);其次,基于峭度、能量和均方差三个评价指标,从分解得到的若干个IMF分量中选出含有故障特征信息最丰富的3个IMF分量作为诊断用的数据源;然后在选定尺度范围内提取每个IMF分量的形态谱平均值,将三个形态谱平均值构成一个三维特征向量,作为一个样本,形成样本集;最后,利用KFCMC完成对滚动轴承不同故障的分类识别。此外,为了对比说明该方法的识别效果,还将振动信号用经验模态分解(EMD)方法进行分解,用模糊C均值聚类(FCMC)进行分类识别,结果表明所提方法的识别效果要优于EMD形态谱和FCMC相结合的方法。通过对实测的滚动轴承振动信号的实验验证,表明该方法可以实现对滚动轴承故障的有效诊断。 展开更多
关键词 故障诊断 滚动轴承 集总经验模态分解 形态谱 核模糊 C 均值聚类
在线阅读 下载PDF
EEMD和优化的频带熵应用于轴承故障特征提取 被引量:24
9
作者 李华 刘韬 +1 位作者 伍星 陈庆 《振动工程学报》 EI CSCD 北大核心 2020年第2期414-423,共10页
针对滚动轴承早期故障特征提取困难的问题,提出了将集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和优化的频带熵(OFBE)相结合的轴承故障特征提取方法。针对EEMD的多个本征模态分量(Intrinsic Mode Function,IMF),如... 针对滚动轴承早期故障特征提取困难的问题,提出了将集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和优化的频带熵(OFBE)相结合的轴承故障特征提取方法。针对EEMD的多个本征模态分量(Intrinsic Mode Function,IMF),如何选出更能反映故障特征的敏感IMF的问题,提出一种基于频带熵的敏感IMF的选取方法。首先,对原始振动信号进行EEMD分解,获得一系列IMFs;然后,对原信号和各个IMF分量求频带熵,在熵值最小处设计带通滤波器带宽作为特征频带,比较各个IMF的特征频带与原信号熵最小值所处频带之间的从属关系,进而选出反映故障特征的敏感IMF。由于背景噪声的影响,从选取的IMF中难以准确地得到故障频率。因此,利用FBE在选取IMF的基础上设计的带通滤波器,并提出利用包络峭度最大值原则优化带宽,然后对其进行带通滤波,并进行包络功率谱分析以提取故障特征频率。将该方法应用到轴承仿真数据和实际数据中,能够实现轴承故障特征的精确诊断,证明了该方法的有效性和优势。 展开更多
关键词 故障诊断 滚动轴承 集合经验模态分解 频带熵 包络峭度
在线阅读 下载PDF
基于EEMD、度量因子和快速峭度图的滚动轴承故障诊断方法 被引量:57
10
作者 彭畅 柏林 谢小亮 《振动与冲击》 EI CSCD 北大核心 2012年第20期143-146,共4页
基于EMD、谱峭度以及包络分析的滚动轴承故障诊断方法,提出了改进的基于EEMD、度量因子和快速峭度图的诊断方法。该方法首先将故障信号进行EEMD分解得到一组IMFs,然后用度量因子筛选出最能表征故障信息的IMF分量重构信号,再用快速峭度... 基于EMD、谱峭度以及包络分析的滚动轴承故障诊断方法,提出了改进的基于EEMD、度量因子和快速峭度图的诊断方法。该方法首先将故障信号进行EEMD分解得到一组IMFs,然后用度量因子筛选出最能表征故障信息的IMF分量重构信号,再用快速峭度图构造最优带通滤波器,最后将滤波后的重构信号进行包络分析并将包络谱与轴承故障特征频率进行比较,从而诊断出具体故障。滚动轴承的内圈故障仿真数据以及工程实测数据均很好地验证了提出的改进方法的有效性,说明其具有良好的应用前景。 展开更多
关键词 EEMD 度量因子 快速峭度图 包络分析
在线阅读 下载PDF
OEEMD与Teager能量算子结合的轴承故障诊断 被引量:11
11
作者 王凤利 邢辉 +3 位作者 段树林 邱赤东 宋玉超 李宏坤 《振动.测试与诊断》 EI CSCD 北大核心 2018年第1期87-91,共5页
针对滚动轴承发生局部故障时振动信号中微弱周期性冲击的特征提取问题,提出参数优化集合经验模式分解(optimal ensemble empirical mode decomposition,简称OEEMD)与Teager能量算子解调结合的滚动轴承故障诊断方法。首先,针对集合经验... 针对滚动轴承发生局部故障时振动信号中微弱周期性冲击的特征提取问题,提出参数优化集合经验模式分解(optimal ensemble empirical mode decomposition,简称OEEMD)与Teager能量算子解调结合的滚动轴承故障诊断方法。首先,针对集合经验模式分解(ensemble empirical mode decomposition,简称EEMD)过程中两个关键参数k(加入白噪声的幅值系数)和m(集合平均次数)的准确选取问题,通过引入相关系数、相关均方根误差和信噪比分析,给出一种可自适应确定这两个参数取值的OEEMD方法,通过OEEMD将冲击从滚动轴承振动信号中分离出来;其次,采用Teager能量算子对其进行包络解调,计算出瞬时幅值后再对瞬时幅值进行包络谱分析,以获取冲击的特征频率,从而对滚动轴承故障进行准确诊断。仿真信号分析和应用实例验证了该方法的有效性。 展开更多
关键词 集合经验模态分解 能量算子 包络解调 滚动轴承 故障诊断
在线阅读 下载PDF
一种基于EEMD-SVD和FCM的轴承故障诊断方法 被引量:10
12
作者 张立国 康乐 +1 位作者 金梅 李盼 《计量学报》 CSCD 北大核心 2016年第1期67-70,共4页
提出了一种基于总体平均经验模式分解(EEMD)和奇异值分解(SVD)的模糊C均值聚类(FCM)相结合的轴承故障诊断方法。首先对轴承信号进行EEMD分解,得到若干个平稳的本征模函数(IMF),再通过相关性分析筛选包含主要信息的前几个分量... 提出了一种基于总体平均经验模式分解(EEMD)和奇异值分解(SVD)的模糊C均值聚类(FCM)相结合的轴承故障诊断方法。首先对轴承信号进行EEMD分解,得到若干个平稳的本征模函数(IMF),再通过相关性分析筛选包含主要信息的前几个分量进行奇异值分解,然后将得到的奇异值矩阵作为特征向量,通过FCM模糊聚类进行识别。实验结果表明,此方法可有效地对轴承故障类型进行识别。 展开更多
关键词 计量学 总体平均经验模式分解 奇异值分解 模糊C均值聚类 轴承故障诊断
在线阅读 下载PDF
基于改进的集合经验模态分解的爆破振动信号趋势项消除方法 被引量:10
13
作者 李晨 梁书锋 +2 位作者 刘传鹏 程健 刘殿书 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第6期636-641,共6页
针对实测爆破振动信号中存在的趋势项干扰问题,基于改进的集合经验模态分解,提出一种趋势项消除方法,并进行了模拟信号的仿真计算和爆破振动信号的实例分析.信号仿真计算结果显示:对于持续振动信号,该方法的趋势项提取结果与已有的基于... 针对实测爆破振动信号中存在的趋势项干扰问题,基于改进的集合经验模态分解,提出一种趋势项消除方法,并进行了模拟信号的仿真计算和爆破振动信号的实例分析.信号仿真计算结果显示:对于持续振动信号,该方法的趋势项提取结果与已有的基于经验模态分解或集合经验模态分解的趋势项消除方法较为接近;但当测试信号呈间歇振动时,该方法对趋势项的提取更为充分,体现了其对分段爆破振动信号中趋势项消除的优越性和适用性.同时,爆破振动速度信号的实例分析验证了该方法在实际应用过程中的可靠性. 展开更多
关键词 爆破振动 趋势项 改进的集合经验模态分解 均值比 固有模态函数
在线阅读 下载PDF
基于EEMD和模糊C均值聚类的风电机组齿轮箱故障诊断 被引量:35
14
作者 王军辉 贾嵘 谭泊 《太阳能学报》 EI CAS CSCD 北大核心 2015年第2期319-324,共6页
针对风电机组齿轮箱中齿轮故障特征提取与故障诊断问题,提出一种基于集合经验模式分解(EEMD)、奇异谱熵和模糊C均值聚类的故障诊断方法。首先对原始振动信号进行EEMD分解,得到各阶本征模态函数(IMF)构成的特征模式矩阵。接着对该特征模... 针对风电机组齿轮箱中齿轮故障特征提取与故障诊断问题,提出一种基于集合经验模式分解(EEMD)、奇异谱熵和模糊C均值聚类的故障诊断方法。首先对原始振动信号进行EEMD分解,得到各阶本征模态函数(IMF)构成的特征模式矩阵。接着对该特征模式矩阵求奇异谱熵值,奇异谱熵值的大小能反映部件的工作状态和故障类型。最后,将得到的奇异谱熵值矩阵进行模糊聚类分析并得到分类结果。通过对齿面磨损、齿面剥落和正常3种齿轮状态分别使用EMD法和EEMD法进行故障分类对比,结果验证了该方法的有效性和可行性,同时证明EEMD法具有更好的分类效果。 展开更多
关键词 风电机组 齿轮箱 故障诊断 集合经验模式分解 奇异谱熵 模糊C均值聚类
在线阅读 下载PDF
基于小波去噪和EEMD包络解调分析的滚动轴承故障诊断方法 被引量:8
15
作者 时培明 许帅 李培 《现代制造工程》 CSCD 北大核心 2015年第12期12-17,共6页
针对强噪声背景下的故障信号诊断问题,提出一种基于小波去噪和改进型总体经验模式分解算法(Ensemble Empirical Mode Decomposition,EEMD)包络解调分析的滚动轴承故障诊断方法。由于经验模态分解方法易产生虚假分量和模态混叠现象,引入E... 针对强噪声背景下的故障信号诊断问题,提出一种基于小波去噪和改进型总体经验模式分解算法(Ensemble Empirical Mode Decomposition,EEMD)包络解调分析的滚动轴承故障诊断方法。由于经验模态分解方法易产生虚假分量和模态混叠现象,引入EEMD。首先将采集到的振动信号进行软阈值去噪,然后对去噪信号进行EEMD分解,抽取能量较大的前4个内禀模态函数(IMF)进行Hilbert变换,得到包络信号,最后对包络信号进行细化谱分析,得到轴承故障特征频率。小波去噪可解决噪声造成的包络信号粗糙这一问题,提高了包络提取精度。将该方法应用于滚动轴承的内圈和外圈故障诊断,诊断结果均表明该方法能够准确有效地提取故障特征频率。 展开更多
关键词 小波变换 EEMD 包络解调分析 HILBERT变换 细化谱
在线阅读 下载PDF
基于EMD和集合预报技术的气候预测方法 被引量:8
16
作者 毕硕本 陈譞 +2 位作者 覃志年 徐寅 王必强 《热带气象学报》 CSCD 北大核心 2012年第2期283-288,共6页
气候系统是典型的非平稳性系统,然而对于气候观测数据的处理通常是在时间序列平稳的假定下完成的,比如气温和降水的多步预报,这通常会导致预报准确度较低。为改进该缺陷,首先将非平稳数据序列分解成平稳的、多尺度特征的本征模态函数分... 气候系统是典型的非平稳性系统,然而对于气候观测数据的处理通常是在时间序列平稳的假定下完成的,比如气温和降水的多步预报,这通常会导致预报准确度较低。为改进该缺陷,首先将非平稳数据序列分解成平稳的、多尺度特征的本征模态函数分量(IMF),再使用数值集合预报与逐步回归分析相结合的方式对每一个IMF分量构建不同的预报模型,最后线性拟合成预报结果。通过Visual Studio 2008开发平台使用上述方法建立了一个短期气候预报系统,采用广西区88个气象站1957—2005年的2月距平气温数据进行实际验证。结果表明,相对于普通预测和单一预测方法,加入了EMD和集合预报技术的方法在仅用历史资料进行多步预测的情况下,对于气候的变化趋势以及突发性气候具有更好的预报能力。 展开更多
关键词 短期气候预测 经验模态分解(EMD) 集合预报 均生函数逐步回归模型 时间序列
在线阅读 下载PDF
经验模式分解的改进及其对球轴承缺陷的诊断 被引量:7
17
作者 杜秋华 杨曙年 《振动.测试与诊断》 EI CSCD 2007年第1期67-70,共4页
在分析经验模式分解存在问题的基础上,改进了经验模式分解的算法,提出用窗口平均法取代原极值包络法来计算局部均值。给出了窗口平均法的具体算法,并通过模拟信号进行了验证。结果表明,改进的算法减少了三次样条插值使用的次数,从而减... 在分析经验模式分解存在问题的基础上,改进了经验模式分解的算法,提出用窗口平均法取代原极值包络法来计算局部均值。给出了窗口平均法的具体算法,并通过模拟信号进行了验证。结果表明,改进的算法减少了三次样条插值使用的次数,从而减少了信号分解的时间,并且所有的数据都参与了局部均值的计算,提高了数据的利用率。同时,用改进的EMD方法取代传统包络分析中的带通滤波器,对实际的缺陷轴承进行了诊断。结果表明,经验模式分解方法比传统的包络分析更有效。 展开更多
关键词 经验模式分解 内模函数 局部均值 窗口平均均值 球轴承 包络分析
在线阅读 下载PDF
基于EEMD的GPS高程时间序列噪声识别与提取 被引量:25
18
作者 张恒璟 程鹏飞 《大地测量与地球动力学》 CSCD 北大核心 2014年第2期79-83,共5页
提出一种基于EEMD的GPS高程时间序列噪声识别与提取方法,将信号通过整体经验模式分解,再结合平均周期与能量密度乘积指标,改进了基于连续均方误差准则的噪声识别方法。通过中国两个CORS基准站高程时间序列信号噪声提取实验,结果表明改... 提出一种基于EEMD的GPS高程时间序列噪声识别与提取方法,将信号通过整体经验模式分解,再结合平均周期与能量密度乘积指标,改进了基于连续均方误差准则的噪声识别方法。通过中国两个CORS基准站高程时间序列信号噪声提取实验,结果表明改进后的方法能避免有物理意义的周期分量被误认为噪声,正确识别了信号与噪声的分界点。 展开更多
关键词 GPS高程时间序列 整体经验模式分解 信号去噪 能量密度 连续均方误差
在线阅读 下载PDF
信号相关性和EEMD-Hilbert包络在滚动轴承故障诊断中的应用 被引量:12
19
作者 佟雨燕 陆森林 《噪声与振动控制》 CSCD 2013年第5期144-149,共6页
针对传统信号包络的带通滤波器的中心频率和带宽的选择不确定性和经验模式分解(EMD)在非线性非平稳信号处理中存在的模态混叠问题,提出了一种以信号的相关性为判据,获取总体经验模式分解(EEMD)的最佳IMF分量,并对其进行Hilbert包络解调... 针对传统信号包络的带通滤波器的中心频率和带宽的选择不确定性和经验模式分解(EMD)在非线性非平稳信号处理中存在的模态混叠问题,提出了一种以信号的相关性为判据,获取总体经验模式分解(EEMD)的最佳IMF分量,并对其进行Hilbert包络解调获取故障特征频率,实现滚动轴承早期故障的诊断的新方法。实验分析结果表明:该方法能够准确地识别和诊断出滚动轴承的早期故障类型,适合滚动轴承早期故障的精确诊断,具有一定实用价值。 展开更多
关键词 振动与波 信号相关性 总体经验模态分解 Hilbert包络 滚动轴承 故障诊断
在线阅读 下载PDF
基于改进的MEEMD的隧道掘进爆破振动信号去噪优化分析 被引量:9
20
作者 周红敏 赵事成 +3 位作者 赵文清 王双 郝广伟 张宪堂 《振动与冲击》 EI CSCD 北大核心 2023年第10期74-81,共8页
爆破振动信号受现场条件限制,多为复杂含噪信号,对降噪方法的性能提出更高要求。为了获得真实振动特征,建立了一种基于改进的总体平均经验模态分解(modified ensemble empirical mode decomposition,MEEMD)的联合去噪方法。首先,将原始... 爆破振动信号受现场条件限制,多为复杂含噪信号,对降噪方法的性能提出更高要求。为了获得真实振动特征,建立了一种基于改进的总体平均经验模态分解(modified ensemble empirical mode decomposition,MEEMD)的联合去噪方法。首先,将原始信号进行MEEMD分解得到本征模态分量(intrinsic mode function,IMF),结合相关系数和样本熵(sample entropy,SE)-Hurst指数进行IMF分类;然后,针对含噪IMF分量中的残留噪声,使用最小均方(least mean square,LMS)自适应滤波进行降噪,达到信号去噪的目的。算法对比结果表明:在仿真试验中,MEEMD-LMS相较互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)等方法表现出更优的降噪性能;在隧道掘进爆破的实例分析中,MEEMD-LMS相较MEEMD对高频噪声的降噪效果更好,低频段频谱更清晰,具备良好的适用性。 展开更多
关键词 隧道掘进 爆破振动 改进的总体平均经验模态分解(MEEMD) 最小均方(LMS)滤波 本征模态分量(IMF)评价
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部