期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
基于CEEMD-SE-PSR-BP的短期风速预测
1
作者 高晟扬 李法社 《太阳能学报》 北大核心 2025年第4期415-422,共8页
为提升预测的准确度,提出一种互补集合经验模态分解(CEEMD)、样本熵(SE)、相空间重构(PSR)以及神经网络(BP)的短期风速预测新模型。首先运用CEEMD技术对风速时间序列进行拆解,化繁为简,分离出多个子序列。随后,计算每个子序列的SE,从SE... 为提升预测的准确度,提出一种互补集合经验模态分解(CEEMD)、样本熵(SE)、相空间重构(PSR)以及神经网络(BP)的短期风速预测新模型。首先运用CEEMD技术对风速时间序列进行拆解,化繁为简,分离出多个子序列。随后,计算每个子序列的SE,从SE的特征中重组风速序列。继而,将各子序列的预测结果进行相空间重构,获取神经网络预测的输入输出样本。最后运用神经网络预测每个样本,并将所有预测结果累加。此外,还对风电场的实际运行数据进行试验,并将模型的预测结果与其他预测方法进行对比,实验结果显示出此模型在提高风速预测精度方面的显著优势。 展开更多
关键词 风速预测 样本熵 互补集合经验模态分解 相空间重构 神经网络 时间序列
在线阅读 下载PDF
基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测 被引量:9
2
作者 杨国华 祁鑫 +4 位作者 贾睿 刘一峰 蒙飞 马鑫 邢潇文 《中国电力》 CSCD 北大核心 2024年第2期55-61,共7页
为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门... 为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门控循环单元(longshorttermmemory-gatedrecurrentunit,LSTM-GRU)的短期风电功率预测模型。首先,利用互补集合经验模态分解将原始风电功率序列分解为若干本征模态函数(intrinsic mode function,IMF)分量和一个残差(residual,RES)分量,利用样本熵算法将相近的分量进行重构;其次,搭建卷积神经网络和长短期记忆网络的并行网络结构,提取数据的局部特征和时序特征,并将特征融合后输入门控循环单元网络中进行学习预测;最后,通过算例进行验证,结果表明采用该模型后预测精度得到了有效提升,其均方根误差降低了15.06%、平均绝对误差降低了15.22%、决定系数提高了1.91%。 展开更多
关键词 短期风电功率预测 互补集合经验模态分解 样本熵 长短期记忆网络 门控循环单元
在线阅读 下载PDF
基于改进EEMD-SE-ARMA的超短期风功率组合预测模型 被引量:41
3
作者 田波 朴在林 +1 位作者 郭丹 王慧 《电力系统保护与控制》 EI CSCD 北大核心 2017年第4期72-79,共8页
针对风力发电功率时间序列具有非线性和非平稳性的特性,提出了一种改进的集成经验模态分解(Modified Ensemble Empirical Mode Decomposition,MEEMD)-样本熵(Sample Entropy,SE)-ARMA的风电功率超短期组合预测模型。将EEMD分解中添加的... 针对风力发电功率时间序列具有非线性和非平稳性的特性,提出了一种改进的集成经验模态分解(Modified Ensemble Empirical Mode Decomposition,MEEMD)-样本熵(Sample Entropy,SE)-ARMA的风电功率超短期组合预测模型。将EEMD分解中添加的白噪声信号改为添加绝对值相等的正负两组白噪声信号,并将MEEMD分解过程中的EMD步骤使用端点延拓和分段三次埃尔米特插值进行改进,形成一种改进的EEMD分解算法(即MEEMD)。利用MEEMD-SE将风力发电功率时间序列分解为一系列复杂度差异明显的风电子序列;针对每一个不同的子序列建立适当的ARMA预测模型;将各预测分量进行叠加重构,得到最终的风电功率预测值。通过算例分析及与其他几种预测模型预测结果的对比,证明MEEMD-SE-ARMA组合预测模型可以有效地提高风力发电功率超短期预测的精度。 展开更多
关键词 改进的集成经验模态分解 风电预测 样本熵 时间序列 组合预测模型 端点延拓
在线阅读 下载PDF
基于EEMD-SE-LSTM的混凝土坝变形监测模型 被引量:28
4
作者 侯回位 郑东健 +1 位作者 刘永涛 黄寒冰 《水利水电科技进展》 CSCD 北大核心 2022年第1期61-66,共6页
为提高混凝土坝变形监测数据的预测精度,构建了一种基于集成经验模态分解(EEMD)与样本熵重构(SE)的长短期记忆网络(LSTM)预测模型。模型利用EEMD对原始数据序列进行分解,并计算每个分量序列的样本熵,以原始序列样本熵作为基准进行重构,... 为提高混凝土坝变形监测数据的预测精度,构建了一种基于集成经验模态分解(EEMD)与样本熵重构(SE)的长短期记忆网络(LSTM)预测模型。模型利用EEMD对原始数据序列进行分解,并计算每个分量序列的样本熵,以原始序列样本熵作为基准进行重构,再对重构后的各序列建立LSTM模型进行预测,最后把各预测值叠加以得到最终预测结果。以某混凝土拱坝为例,将该模型预测结果与EMD-LSTM、LSTM和SVM模型的预测结果进行对比,结果表明EEMD-SE-LSTM模型具有更高的预测精度,在混凝土坝的变形预测中具备更好的可行性与优越性。 展开更多
关键词 集成经验模态分解 长短期记忆神经网络 样本熵 变形预测 混凝土坝
在线阅读 下载PDF
基于CEEMD-SE-MM的中长期风速模拟方法 被引量:8
5
作者 徐杉杉 朱俊澎 袁越 《电力自动化设备》 EI CSCD 北大核心 2020年第2期69-75,共7页
高精度的风速模型对风资源的开发与利用具有重要意义。提出一种基于完全集合经验模态分解-样本熵-马尔可夫模型(CEEMD-SE-MM)的中长期风速模拟方法。利用CEEMD法对风速序列进行特征提取,将风速序列分解成一组固有模态函数和残差;以SE为... 高精度的风速模型对风资源的开发与利用具有重要意义。提出一种基于完全集合经验模态分解-样本熵-马尔可夫模型(CEEMD-SE-MM)的中长期风速模拟方法。利用CEEMD法对风速序列进行特征提取,将风速序列分解成一组固有模态函数和残差;以SE为特征归类固有模态函数合成新模态分量;基于MM对新模态分量片段进行谱聚类;拟合波动片段时长并整合聚类结果得到双层多轨风速模型;在考虑各新模态分量之间相关性的前提下采用双层抽样完成风速模拟。与马尔可夫链蒙特卡洛和改进马尔可夫链蒙特卡洛的结果对比表明,所提风速模型及模拟方法较好地保持了原始风速序列的时序特性和概率特性,且具有更高的精度。 展开更多
关键词 马尔可夫模型 完全集合经验模态分解 谱聚类 样本熵 中长期风速模拟
在线阅读 下载PDF
基于EEMD-SE和栈式降噪自编码网络的局部放电模式识别 被引量:5
6
作者 张金水 蒋伟 薛乃凡 《计算机应用与软件》 北大核心 2021年第9期34-38,132,共6页
由于变电站环境复杂,利用传统的特征统计方法不能准确地提取局部放电(PD)信号的特征及对其识别分类。对此,提出一种基于集合经验模态分解(EEMD)和样本熵(SE)的局部放电信号特征提取方法。利用EEMD算法对局部放电信号进行时频分析;计算E... 由于变电站环境复杂,利用传统的特征统计方法不能准确地提取局部放电(PD)信号的特征及对其识别分类。对此,提出一种基于集合经验模态分解(EEMD)和样本熵(SE)的局部放电信号特征提取方法。利用EEMD算法对局部放电信号进行时频分析;计算EEMD分解得到的固有模态函数(IMF)的样本熵,并将其作为特征向量表征不同放电类型;采用栈式降噪自编码网络(SDAE)对放电类型进行分类识别。通过对四类局部放电故障进行特征提取和模式识别,对比实验结果表明,该方法能有效地提取放电信号的特征,并较准确地识别各类放电类型。 展开更多
关键词 局部放电 集合经验模态分解 样本熵 栈式降噪自编码器 特征提取 模式识别
在线阅读 下载PDF
一种适用于风储微电网的混合储能系统的功率分配策略 被引量:2
7
作者 李艳波 杨凯 +3 位作者 陈俊硕 姚博彬 刘维宇 武奇生 《电测与仪表》 北大核心 2025年第2期43-50,共8页
混合储能系统是微电网的重要组成部分之一,研究其功率分配策略对电池的保护具有重要意义。在由超级电容-蓄电池组成的混合储能系统的基础上,提出互补集合经验模态分解的方法来平抑风力发电不稳定性而引起的功率波动。针对风力发电的波... 混合储能系统是微电网的重要组成部分之一,研究其功率分配策略对电池的保护具有重要意义。在由超级电容-蓄电池组成的混合储能系统的基础上,提出互补集合经验模态分解的方法来平抑风力发电不稳定性而引起的功率波动。针对风力发电的波动性及不确定性,互补集合经验模态分解法能够把风电原始能量信号分解为固有模态分量和余量,通过能量熵理论求出功率一次分配分界点,即初始功率分配;提出利用模糊控制对混合储能系统的荷电状态进行优化约束,自适应调整并修正混合储能系统功率分配指令。利用MATLAB程序及Simulink仿真模型并结合算例分析,结果说明了提出的策略可以使蓄电池SOC波动不超过8%,超级电容SOC波动不超过10%,有效提高了整个系统的工作效率和使用寿命。 展开更多
关键词 互补集合经验模态分解法 模糊控制 荷电状态 能量熵
在线阅读 下载PDF
一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型 被引量:1
8
作者 瞿伟 李达 +1 位作者 李久元 边子策 《大地测量与地球动力学》 北大核心 2025年第3期221-230,共10页
在对滑坡监测数据粗差进行有效处理及充分顾及滑坡监测数据自身特性的基础上,提出一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型。首先,利用孤立森林法对滑坡时序监测数据的显著粗差进行处理,再对其平稳性、自相关性... 在对滑坡监测数据粗差进行有效处理及充分顾及滑坡监测数据自身特性的基础上,提出一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型。首先,利用孤立森林法对滑坡时序监测数据的显著粗差进行处理,再对其平稳性、自相关性、正态性进行综合分析,确定模型预测中输入特征序列的最佳长度;其次,利用集合经验模态分解(EEMD)方法,将非稳态滑坡监测数据分解为多个平稳时间序列,再结合样本熵与K-means算法将其划分为高频、中频、低频3类时间分量;最后,通过对比不同神经网络模型的预测精度,分别构建适合于3类时间分量的预测模型,再将预测结果相叠加,实现对滑坡位移的高精度预测。实验区典型滑坡体北斗/GNSS监测数据测试表明,本文组合预测模型对含有显著粗差的滑坡监测数据具有较好的适用性,相较于单一及现有组合模型可显著提高滑坡位移预测精度。 展开更多
关键词 滑坡位移预测 集合经验模态分解 样本熵 深度神经网络 时间卷积网络
在线阅读 下载PDF
基于EEMD-SVD-PE的轨道波磨趋势项提取 被引量:11
9
作者 陈亮 刘宏立 +2 位作者 郑倩 马子骥 李艳福 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2019年第5期171-177,共7页
钢轨波磨检测是保障行车安全的重要手段,针对复杂钢轨线路波磨数据中的轨道起伏趋势提取问题,提出了一种基于排列组合熵(Permutation Entropy, PE)选取低复杂度奇异值分量重构趋势的EEMD-SVD信号去趋方法.相比已有的经验模式分解去趋算... 钢轨波磨检测是保障行车安全的重要手段,针对复杂钢轨线路波磨数据中的轨道起伏趋势提取问题,提出了一种基于排列组合熵(Permutation Entropy, PE)选取低复杂度奇异值分量重构趋势的EEMD-SVD信号去趋方法.相比已有的经验模式分解去趋算法,该方法考虑到原始IMF可能存在的信号成分混杂问题(如含有白噪声与信号的低频成分),首次提出通过奇异值分解来精确提取隐藏在多维IMF矩阵中的趋势项成分作为奇异值分量.由于协方差矩阵构建的奇异值分量排列时只考虑了能量的分布而未考虑趋势项信号低复杂度、高幅的特点,使用排列组合熵来选出符合趋势项特征的奇异值分量,最后对满足要求的奇异值分量进行重建得到最终的趋势项.为验证本文方法的有效性,分别进行了数字仿真和实际钢轨波磨数据去趋实验.数字仿真实验结果表明该方法整体去趋性能优于低通滤波法、与EMD结合的线性规划法和小波分解法,尤其在多信噪比的仿真实验中,当信噪比较低时,提趋准确率最大提高约30%.同时,实际钢轨波磨数据去趋实验说明本文方法能够适用于钢轨波磨检测. 展开更多
关键词 聚合经验模态分解 奇异值分解 排列组合熵 信号去趋
在线阅读 下载PDF
基于EEMD与功率谱熵的旋转机械故障诊断方法
10
作者 席俊杰 谢明川 +1 位作者 汪勇 张海波 《航空发动机》 北大核心 2025年第3期83-88,共6页
为了提高航空发动机旋转机械故障信号特征提取效果与诊断准确率,提出了一种集合经验模态分解(EEMD)融合功率谱熵的故障诊断方法。该方法采用EEMD对原始信号进行分解,并利用功率谱熵定量分析了各阶本征模态函数(IMF)的信息量,并对部分IM... 为了提高航空发动机旋转机械故障信号特征提取效果与诊断准确率,提出了一种集合经验模态分解(EEMD)融合功率谱熵的故障诊断方法。该方法采用EEMD对原始信号进行分解,并利用功率谱熵定量分析了各阶本征模态函数(IMF)的信息量,并对部分IMF自适应降噪处理。重构所有IMF与余项,并输入至卷积神经网络(CNN)进行训练与故障分类。分别利用理想信号与航空发动机旋转机械故障模拟平台的实测信号,验证了所提出的信号处理方法与故障诊断方法的有效性与优势。结果表明:相较于传统信号处理与故障诊断方法,该方法处理信号后的信噪比(SNR)提高25%以上,均方误差(MSE)减小40%以上,故障诊断准确率提高10%以上,更有利于工程中的旋转机械故障定位与诊断。 展开更多
关键词 故障诊断 旋转机械 信号处理 集合经验模态分解 功率谱熵 卷积神经网络 航空发动机
在线阅读 下载PDF
基于互补集合经验模态分解的相位敏感光时域反射计系统降噪方法
11
作者 岳新博 高旭 +2 位作者 高阳 王海涛 鲁秀娥 《红外与激光工程》 北大核心 2025年第2期134-148,共15页
为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)... 为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)算法筛选后,通过改进的小波阈值算法进行去噪,并设计采用多元宇宙优化(MVO)算法对参数进行优化。实际搭建了外差式Φ-OTDR系统,经仿真和实际测试验证文中算法有效性。最后,将设计算法与以往的经验模态分解-皮尔逊相关系数(EMD-PCC)、自适应噪声完备集合经验模态分解(CEEMDAN)及变分模态分解-改进小波阈值(VMD-NWT)去噪方法进行了对比。结果表明,在10.14 km的传感光纤位置上,该方法对于低频10 Hz、中频200 Hz以及高频1 200 Hz的振动事件,其位置信息信噪比分别可达8.88、30.26、11.90 dB,对不同频率段的振动信号均具备有效的去噪能力,且系统定位精度更高。该方法在提高系统信噪比的同时,成功地对振动信号进行了解调,且解调效果比其他三种算法效果更好,为Φ-OTDR系统降噪研究提供了新思路。 展开更多
关键词 相位敏感光时域反射仪 互补集合经验模态分解算法 多尺度排列熵 改进的小波阈值算法 多元宇宙优化算法
在线阅读 下载PDF
联合CEF-MOMEDA的风机高速端轴承潜隐性故障敏感信息提取方法
12
作者 蔡敏 张强 +2 位作者 秦波 张海平 罗权毅 《机电工程》 北大核心 2025年第8期1428-1439,共12页
在大数据驱动的MW级半直驱风电机组滚动轴承服役期的状态智能辨识中,针对输入样本“质量差”致使所构建模型识别率低这一问题,提出了一种联合相关能量波动(CEF)评价准则与多点最优最小熵解卷积(MOMEDA)的潜隐性故障敏感信息提取方法。首... 在大数据驱动的MW级半直驱风电机组滚动轴承服役期的状态智能辨识中,针对输入样本“质量差”致使所构建模型识别率低这一问题,提出了一种联合相关能量波动(CEF)评价准则与多点最优最小熵解卷积(MOMEDA)的潜隐性故障敏感信息提取方法。首先,将拾取的振动数据由变分模态分解为若干个表征原数据不同成分的本征模分量;然后,根据上述分量能量的变化,量化、评估所包含的潜隐性故障占比,筛选并提取敏感成分后对故障信号进行了重构;接着,利用多点最优最小熵解卷积对重构后的数据进行了有效成分增强提取;最后,将上述能量波动评价准则与多点最优最小熵解卷积联合提取的敏感信息数据作为深度置信网络(DBN)的输入,构建了滚动轴承状态智能辨识模型,采用现场实验与凯斯西储大学(CWRU)数据集对CEF-MOMEDA的方法进行了验证。研究结果表明:基于CEF-MOMEDA-DBN的模型在风机滚动轴承诊断中的故障识别率更高;在凯斯西储大学数据集上,与集合经验模态分解(EEMD)、局部均值分解(LMD)相比,CEF-MOMEDA方法联合能量波动准则提取敏感信息数据并作为智能辨识模型的输入后,故障识别率分别提高了2.5%和1.25%。该方法能够有效提高故障识别的准确率,具有更强的实用性和泛化性。 展开更多
关键词 MW级半直驱风电机组 滚动轴承故障诊断 敏感成分联合提取 相关能量波动 多点最优最小熵解卷积 深度置信网络 集合经验模态分解 局部均值分解
在线阅读 下载PDF
旋转机械轴心轨迹降噪研究及轴心轨迹识别
13
作者 陕亮 方桃 +1 位作者 孙晨雨 王亮 《核科学与工程》 北大核心 2025年第2期256-264,共9页
针对实测的电厂信号中存在的噪声成分,本文采用完全自适应噪声集合经验模态分解法(CEEMDAN)对电厂信号进行分解,从而剔除表征噪声成分的部分信号。同时,本文采用经验模态分解(EMD)、集合经验模态分解(EEMD)进行了对比分析,并采用排列熵... 针对实测的电厂信号中存在的噪声成分,本文采用完全自适应噪声集合经验模态分解法(CEEMDAN)对电厂信号进行分解,从而剔除表征噪声成分的部分信号。同时,本文采用经验模态分解(EMD)、集合经验模态分解(EEMD)进行了对比分析,并采用排列熵平均值进行定量评价。总结可得,CEEMDAN降噪结果的排列熵平均值更小且降噪后信号更加光滑,证明其可以更好地去除电厂信号中的噪声成分。 展开更多
关键词 信号降噪 完全自适应噪声集合经验模态分解 互相关分析 排列熵 定量评价
在线阅读 下载PDF
基于TLGMCC准则联合CEEMDAN与LWT的优化降噪方法
14
作者 刘彦明 曹敏 +1 位作者 孙安 项敢亮 《光通信技术》 北大核心 2025年第2期11-16,共6页
针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分... 针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分解,获取模态分量。接着,将原始信号与这些模态分量分割为多个时间局部片段,并计算它们对应时间局部片段的相关熵值。然后,通过LWT算法处理弱相关分量,最后重构剩余分量以完成去噪过程。实验结果表明:在5 km的传感距离和10 m的空间分辨率的条件下,系统的信噪比达到了54.36 d B,同时均方根误差降低至0.091。 展开更多
关键词 自适应噪声完备集合经验模态分解 提升小波变换 时域局部广义最大互相关熵 模态分量
在线阅读 下载PDF
Application of time–frequency entropy from wake oscillation to gas–liquid flow pattern identification 被引量:6
15
作者 HUANG Si-shi SUN Zhi-qiang +1 位作者 ZHOU Tian ZHOU Jie-min 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1690-1700,共11页
Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this s... Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems. 展开更多
关键词 gas–liquid two-phase flow wake oscillation flow pattern map time–frequency entropy ensemble empirical mode decomposition Hilbert transform
在线阅读 下载PDF
基于特征判定系数的电力变压器振动信号故障诊断 被引量:5
16
作者 谢丽蓉 严侣 +1 位作者 吐松江·卡日 张馨月 《电力工程技术》 北大核心 2024年第3期217-225,共9页
变压器带电故障诊断对于保证电力变压器安全平稳运行具有重要的意义。针对变压器工作环境复杂且单一参数表征变压器故障类型不全面的问题,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposit... 变压器带电故障诊断对于保证电力变压器安全平稳运行具有重要的意义。针对变压器工作环境复杂且单一参数表征变压器故障类型不全面的问题,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和特征熵权法(entropy weight method,EWM)进行故障诊断的方法。通过相关系数与峭度加权(correlation coefficient and weighted kurtosis,CCWK)原则筛选CEEMDAN分量并重构信号,在实现剔除冗余分量的同时,提升变压器振动信号特征的表征能力;利用EWM构建特征判定系数实现单一数据诊断变压器故障类型;通过主成分分析法减小混合域特征尺度,采用鸡群优化算法优化支持向量机(support vector machine,SVM)模型进行故障诊断。对某变电站110 kV三相油浸式变压器进行分析,结果表明与概率神经网络和SVM等变压器故障诊断方法相比,文中方法能在提前定性故障类型的同时,进一步提高变压器故障诊断的准确率与效率。 展开更多
关键词 故障诊断 变压器振动信号 自适应噪声完备集合经验模态分解(CEEMDAN) 信噪比 熵权法(EWM) 支持向量机(SVM) 鸡群优化算法
在线阅读 下载PDF
CEEMDAN-SE-WT降噪方法在航空发动机燃油流量信号中的应用 被引量:2
17
作者 曲春刚 朱胜翔 冯正兴 《科学技术与工程》 北大核心 2024年第15期6525-6533,共9页
燃油流量信号是反映发动机状态和计算飞机排放物排放量的重要信号,但飞机飞行过程中传感器采集信号时不可避免地会受到外界环境以及内部因素干扰。提出一种结合样本熵(sample entropy,SE)的完全自适应噪声集合经验模态分解(complete ens... 燃油流量信号是反映发动机状态和计算飞机排放物排放量的重要信号,但飞机飞行过程中传感器采集信号时不可避免地会受到外界环境以及内部因素干扰。提出一种结合样本熵(sample entropy,SE)的完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与小波变换(wavelet transform,WT)的联合降噪方法。首先使用CEEMDAN对燃油流量信号进行分解得到本征模态分量,利用样本熵筛选含噪分量,并用相关系数与方差贡献率进行复核。对于含噪分量使用小波阈值降噪进行处理。最后将未处理的模态分量和完成降噪的模态分量重构得到最终燃油流量信号。通过与其他方法比较,CEEMDAN-SE-WT方法拥有最高信噪比为85.287,降噪后燃油消耗总量与飞机总重变化最为接近,可以认为该方法较大程度保留了燃油流量信号中的有效特征,为后续计算民机排放物排放总量提供了良好的数据支持。 展开更多
关键词 降噪 燃油流量信号 完全自适应噪声集合经验模态分解 小波阈值降噪 样本熵
在线阅读 下载PDF
一种灰色关联分析优化ICEEMDAN的VP倾斜仪信号降噪模型
18
作者 庞聪 孙海洋 +3 位作者 刘天龙 姚瑶 李忠亚 马武刚 《大地测量与地球动力学》 CSCD 北大核心 2024年第6期654-660,共7页
VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行I... VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行ICCEMDAN处理,得到若干个固有模态函数(IMF),并依次排列与标记;然后基于这些IMF分别计算相关系数、互信息、R^(2)、Adj-R^(2)、MSE、SSE、RMSE、MAE、MAPE、样本熵等10个评价指标值,构建IMF可信度评价指标矩阵;最后借助灰色关联分析(GRA)计算各评价指标与不同IMF之间的关联系数和关联度,依据关联度大小对各个IMF进行排序,将排名靠前的IMF进行线性重构,即可完成信号降噪。仿真去噪实验和实测去噪实验均表明,GRA-ICEEMDAN模型优于卡尔曼滤波、70阶低通FIR滤波、Savitzky-Golay等经典降噪模型,能显著区分噪声成分和有效成分,原始信号分解后的重构误差与信号损失极小,可推广至其他仪器的复杂信号降噪中。 展开更多
关键词 VP倾斜仪 信号降噪 改进的自适应噪声完备集合经验模态分解 灰色关联分析 固有模态函数 样本熵 互信息
在线阅读 下载PDF
基于集合经验模态分解与样本熵联合小波的固肥流量微波信号去噪方法 被引量:1
19
作者 张俊宁 赵礼豪 +3 位作者 陈宁波 杨立伟 刘刚 吕树盛 《电子测量与仪器学报》 CSCD 北大核心 2024年第11期118-125,共8页
针对使用多普勒微波传感器测量颗粒肥料流量时,施肥机运作产生的振动和外部多种干扰导致采集到的信号失真的问题,首先对小波分析与卡尔曼滤波算法进行寻找最优参数。通过对比两种算法的去噪效果,提出一种基于集成经验模态与样本熵联合... 针对使用多普勒微波传感器测量颗粒肥料流量时,施肥机运作产生的振动和外部多种干扰导致采集到的信号失真的问题,首先对小波分析与卡尔曼滤波算法进行寻找最优参数。通过对比两种算法的去噪效果,提出一种基于集成经验模态与样本熵联合小波的去噪算法。并以史丹利15-15-15颗粒肥为实验对象,将多普勒微波传感器等检测系统部署在施肥机上,采集颗粒肥料质量流量信号进行算法效果实验验证。结果表明:与原始信号相比,优化增益系数后的卡尔曼滤波算法,平均信号信噪比提升了3.548 dB。优化小波去噪参数后的小波分析算法,平均信噪比提高了7.184 dB。结合优化去噪参数后的小波分析联合集合经验模态与样本熵的去噪算法,去噪后的信号平均信噪比提高了7.899 dB,平均均方根误差降低了0.184,该算法对用多普勒微波传感器测量颗粒肥料质量流量信号的去噪处理上具有显著的优势。 展开更多
关键词 固肥 多普勒微波 去噪 小波分析 集合经验模态 样本熵
在线阅读 下载PDF
基于ICEEMDAN-多尺度排列熵的拆除爆破振动信号降噪研究 被引量:4
20
作者 康怡泽 姚颖康 +2 位作者 董润龙 贾永胜 谢全民 《振动与冲击》 EI CSCD 北大核心 2024年第13期275-287,共13页
由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN... 由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)与多尺度排列熵联合的降噪算法,并运用皮尔逊系数、信噪比和均方误差来验证所用算法的可行性。对实测拆除爆破塌落触地振动信号进行降噪处理,通过频谱分析以及各类指标对比表明,该联合降噪方法能够有效降低拆除爆破振动信号中的噪声,并且对信号的低频能量影响较小,降噪效果显著,为拆除爆破振动信号分析和处理提供了一种新的有效的方法。 展开更多
关键词 拆除爆破 振动信号 改进的自适应噪声完全集合经验模态分解(ICEEMDAN) 多尺度排列熵 信号降噪
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部