In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional re...In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2-and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.展开更多
目的本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting,XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病...目的本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting,XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病变480个。患者被分为建模组[n=310,数字乳腺X线摄影(digital mammography,DM)检查]、内部验证组(n=108,DM检查),和外部验证组[n=62,数字乳腺体层合成摄影(digital breast tomosynthesis,DBT)检查]。记录患者术前乳腺X线(DM或DBT),MRI以及临床特征。采用XGBoost算法和多因素逻辑回归分析,分别构建XGBoost模型和逻辑回归(logistic regression,LR)模型。使用受试者工作特征(receiver operating characteristic,ROC)曲线评估模型的诊断效能。结果在建模组中,患者以7∶3随机分为训练集(n=217)和测试集(n=93)。训练集、测试集、训练集的内部验证组及训练集的外部验证组中,恶性非肿块病灶分别为159(73%)、58(62%)、73(68%)和43(69%)。XGBoost模型的诊断效能明显优于LR模型,在独立的训练集、测试集、训练集的内部验证组及训练集的外部验证组中均表现出良好的诊断效能,曲线下面积(area under the curve,AUC)在0.884~0.913之间。XGBoost模型在四个队列中也表现出良好的校准能力和临床净获益。结论XGBoost模型能够准确鉴别乳腺非肿块病变的良恶性,具有推广应用的潜力。展开更多
目的探讨动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI)参数对喉癌术后放疗短期预后的评估价值。方法本研究采用病例-对照研究设计方案,选取浙江省湖州市中心医院放射科2021年1月至2023年12...目的探讨动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI)参数对喉癌术后放疗短期预后的评估价值。方法本研究采用病例-对照研究设计方案,选取浙江省湖州市中心医院放射科2021年1月至2023年12月收治的127例喉癌患者为研究对象,患者接受不同肿瘤处理方式后进行根治性放疗。根据患者术后放疗肿瘤是否复发分为复发组(50例)和未复发组(77例),比较2组患者DCE-MRI参数[容量转移常数(volume transfer constant,Ktrans)、速率常数(rateconstant,Kep)、细胞外血管外间隙容积比(volumefractionofextracellular extravascular space,Ve)]及临床资料,采用多因素Logistic回归模型分析喉癌患者术后放疗短期预后的影响因素。采用受试者工作特征(receiver operating characteristic,ROC)及其曲线下面积(area under the curve,AUC)评估DCE-MRI参数对喉癌患者术后放疗短期预后的预测效能。结果复发组患者手术切缘阳性、术前病灶最大径≥4 cm、溃疡型病灶、N分期为N1~N3期、分期为晚期(Ⅲ、Ⅳ)占比均高于未复发组(P<0.05);复发组的Ktrans、Kep高于未复发组,Ve低于未复发组(P<0.05);多因素Logistic回归分析显示,手术切缘为阳性、N分期为N1~N3期、Ktrans、Kep是喉癌术后放疗短期预后的独立危险因素,Ve是保护因素(P<0.05);ROC结果显示,Ktrans、Kep、Ve三参数联合应用和五指标联合应用的Logistic回归模型诊断喉癌术后放疗短期预后的AUC(95%CI)分别为0.920(0.858~0.961)、0.923(0.862~0.963),三参数联合应用较单独应用的AUC明显提高(P<0.05),与五指标联合应用的AUC比较无差异。结论DCE-MRI参数Ktrans、Kep、Ve与喉癌术后放疗短期预后密切相关,Ktrans、Kep、Ve联合对喉癌患者术后放疗短期预后具有较好的预测效能。展开更多
心脏磁共振成像(cardiac magnetic resonance,CMR)过程中患者误动、异常幅度的呼吸运动、心律失常会造成CMR图像质量下降,为解决现有的CMR图像增强网络需要人为制作配对数据,且图像增强后部分组织纹理细节丢失的问题,提出了基于空频域...心脏磁共振成像(cardiac magnetic resonance,CMR)过程中患者误动、异常幅度的呼吸运动、心律失常会造成CMR图像质量下降,为解决现有的CMR图像增强网络需要人为制作配对数据,且图像增强后部分组织纹理细节丢失的问题,提出了基于空频域特征学习的循环一致性生成对抗网络(cycle-consistent generative adversavial network based on spatial-frequency domain feature learning,SFFL-CycleGAN).研究结果表明,该网络无须人为制作配对数据集,增强后的CMR图像组织纹理细节丰富,在结构相似度(structural similarity,SSIM)和峰值信噪比(peak signal to noise ratio,PSNR)等方面均优于现有的配对训练网络以及原始的CycleGAN网络,图像增强效果好,有效助力病情诊断.展开更多
目的基于动态对比增强MRI(dynamic contrast-enhanced MRI,DCE-MRI)和扩散峰度成像(diffusion kurtosis imaging,DKI)参数图构建影像组学模型,评估其在预测三阴性乳腺癌(triple-negative breast cancer,TNBC)中的应用价值。材料与方法...目的基于动态对比增强MRI(dynamic contrast-enhanced MRI,DCE-MRI)和扩散峰度成像(diffusion kurtosis imaging,DKI)参数图构建影像组学模型,评估其在预测三阴性乳腺癌(triple-negative breast cancer,TNBC)中的应用价值。材料与方法回顾性分析165例乳腺癌患者病例资料,根据患者的病理结果分为非TNBC组(120例)和TNBC组(45例)。所有患者术前均接受DCE-MRI和DKI检查。按照8∶2的比例随机分为训练集(n=132)和测试集(n=33)。在第2期DCE-MRI图像、平均扩散峰度值(mean kurtosis,MK)和平均扩散率(mean diffusivity,MD)参数图中勾画出病变区域的三维感兴趣区(three-dimensional region of interest,3D ROI),并提取影像组学特征。使用K最佳、最小冗余最大相关(max-relevance and min-redundancy,mRMR)以及最小绝对收缩和选择算子回归(least absolute shrinkage and selection operator,LASSO)算法依次对特征进行降维和选择,然后,通过逻辑回归(logistic regression,LR)分类器分别建立第2期DCE-MRI模型、DKI参数图模型(MD+MK、MD、MK)及联合模型(DCE-MRI+MD+MK),并采用5折交叉验证法验证模型的稳定性。模型的预测性能通过受试者工作特征(receiver operating characteristic,ROC)曲线和曲线下面积(area under the curve,AUC)进行评估,并使用DeLong检验分析模型间的统计学差异。最后,通过决策曲线分析(decision curve analysis,DCA)评估影像组学模型在临床中的应用价值。结果从每个序列3D ROI中分别提取了2286个影像组学特征,从第2期DCE-MRI、MD+MK、MD、MK及DCE-MRI+MD+MK中分别选取了8、9、12、7、21个特征与TNBC相关。第2期DCE-MRI模型、MD+MK模型、MD模型和MK模型在测试集的AUC分别为0.810、0.769、0.676、0.625;联合模型(DCE-MRI+MD+MK)在测试集中的AUC是0.884,其准确率、敏感度和特异度分别为78.8%、79.2%和77.8%。最后,把临床特征与影像组学特征进行联合建立列线图模型。结果表明,影像组学联合模型(DCE-MRI+MD+MK)优于MD+MK模型、MD模型、MK模型及第2期DCE-MRI模型,但与列线图模型的AUC和DCA差异无统计学意义(P>0.05),表明影像组学联合模型(DCE-MRI+MD+MK)能够在临床实践中提供与列线图模型相似的诊断性能。结论基于DCE-MRI联合DKI参数图的影像组学联合模型(DCE-MRI+MD+MK)及列线图模型可以在术前有效地预测TNBC,有助于临床对TNBC的诊断、制订治疗方案及改善预后。展开更多
脑卒中是全球主要的致残原因之一,可导致患者在运动、感觉及认知功能上出现障碍。传统的康复治疗周期长、见效慢,而近年来脑机接口、健侧第七颈神经移位术、脑刺激和细胞治疗等技术在卒中患者群体中的应用旨在增强脑可塑性、缓解症状,...脑卒中是全球主要的致残原因之一,可导致患者在运动、感觉及认知功能上出现障碍。传统的康复治疗周期长、见效慢,而近年来脑机接口、健侧第七颈神经移位术、脑刺激和细胞治疗等技术在卒中患者群体中的应用旨在增强脑可塑性、缓解症状,为临床提供了新的治疗思路。功能磁共振成像(functional magnetic resonance imaging,fMRI)作为脑科学重要的研究工具之一,已经广泛应用于脑卒中康复的研究中,它不仅能描述功能和网络连接变化,还能预测康复预后、指导治疗方案和监测康复效果,为脑卒中康复治疗提供了理论依据。本综述总结了近年来国内外应用fMRI技术在脑卒中康复期脑网络重塑等方面的探索,分析了相关研究成果以及存在的难点,以期为脑卒中康复治疗的fMRI研究提供新的思路。展开更多
文摘In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2-and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.
文摘目的本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting,XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病变480个。患者被分为建模组[n=310,数字乳腺X线摄影(digital mammography,DM)检查]、内部验证组(n=108,DM检查),和外部验证组[n=62,数字乳腺体层合成摄影(digital breast tomosynthesis,DBT)检查]。记录患者术前乳腺X线(DM或DBT),MRI以及临床特征。采用XGBoost算法和多因素逻辑回归分析,分别构建XGBoost模型和逻辑回归(logistic regression,LR)模型。使用受试者工作特征(receiver operating characteristic,ROC)曲线评估模型的诊断效能。结果在建模组中,患者以7∶3随机分为训练集(n=217)和测试集(n=93)。训练集、测试集、训练集的内部验证组及训练集的外部验证组中,恶性非肿块病灶分别为159(73%)、58(62%)、73(68%)和43(69%)。XGBoost模型的诊断效能明显优于LR模型,在独立的训练集、测试集、训练集的内部验证组及训练集的外部验证组中均表现出良好的诊断效能,曲线下面积(area under the curve,AUC)在0.884~0.913之间。XGBoost模型在四个队列中也表现出良好的校准能力和临床净获益。结论XGBoost模型能够准确鉴别乳腺非肿块病变的良恶性,具有推广应用的潜力。
文摘目的探讨动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI)参数对喉癌术后放疗短期预后的评估价值。方法本研究采用病例-对照研究设计方案,选取浙江省湖州市中心医院放射科2021年1月至2023年12月收治的127例喉癌患者为研究对象,患者接受不同肿瘤处理方式后进行根治性放疗。根据患者术后放疗肿瘤是否复发分为复发组(50例)和未复发组(77例),比较2组患者DCE-MRI参数[容量转移常数(volume transfer constant,Ktrans)、速率常数(rateconstant,Kep)、细胞外血管外间隙容积比(volumefractionofextracellular extravascular space,Ve)]及临床资料,采用多因素Logistic回归模型分析喉癌患者术后放疗短期预后的影响因素。采用受试者工作特征(receiver operating characteristic,ROC)及其曲线下面积(area under the curve,AUC)评估DCE-MRI参数对喉癌患者术后放疗短期预后的预测效能。结果复发组患者手术切缘阳性、术前病灶最大径≥4 cm、溃疡型病灶、N分期为N1~N3期、分期为晚期(Ⅲ、Ⅳ)占比均高于未复发组(P<0.05);复发组的Ktrans、Kep高于未复发组,Ve低于未复发组(P<0.05);多因素Logistic回归分析显示,手术切缘为阳性、N分期为N1~N3期、Ktrans、Kep是喉癌术后放疗短期预后的独立危险因素,Ve是保护因素(P<0.05);ROC结果显示,Ktrans、Kep、Ve三参数联合应用和五指标联合应用的Logistic回归模型诊断喉癌术后放疗短期预后的AUC(95%CI)分别为0.920(0.858~0.961)、0.923(0.862~0.963),三参数联合应用较单独应用的AUC明显提高(P<0.05),与五指标联合应用的AUC比较无差异。结论DCE-MRI参数Ktrans、Kep、Ve与喉癌术后放疗短期预后密切相关,Ktrans、Kep、Ve联合对喉癌患者术后放疗短期预后具有较好的预测效能。
文摘目的探讨增强T2^(*)加权血管成像(enhanced T2 star-weighted angiography,ESWAN)序列中R2^(*)值、相位值、幅度值在T2WI低信号肾脏病变良恶性鉴别诊断中的可行性。材料与方法回顾性收集行ESWAN检查、经病理组织学证实的145例T2WI低信号肾脏病变患者(共145个病灶,恶性病变112个,良性病变33个)的术前MRI图像。在肿瘤最大面积的层面上绘制肿瘤T2WI低信号的感兴趣区。通过Kruskal-Wallis检验、卡方检验对参数进行比较,将有统计学意义的参数进行联合,通过多变量logistic回归建立模型,分析差异有统计学意义的参数,并且绘制其鉴别T2WI低信号肾脏病变良恶性的受试者工作特征(receiver operating characteristic,ROC)曲线,采用DeLong检验评价其诊断效能。结果R2^(*)值和幅度值鉴别T2WI低信号肾脏病变良恶性差异具有统计学意义(P=0.001)。R2^(*)值的ROC曲线下面积(area under the curve,AUC)为0.891[95%置信区间(confidence interval,CI):0.829~0.937,P<0.001],敏感度、特异度分别为97.3%、72.7%;幅度值的AUC为0.869(95%CI:0.803~0.920,P<0.001),敏感度、特异度分别为86.6%、81.8%;相位值的AUC为0.563(95%CI:0.478~0.645,P=0.249),敏感度、特异度分别为67.9%、54.6%;R2^(*)值联合幅度值的AUC为0.886(95%CI:0.823~0.933,P<0.001),敏感度、特异度分别为97.3%、72.7%;R2^(*)值联合病变长径的AUC为0.894(95%CI:0.832~0.939,P<0.001),敏感度、特异度分别为92.0%、81.8%;幅度值联合病变长径的AUC为0.858(95%CI:0.790~0.910,P<0.001),敏感度、特异度分别为75.9%、90.9%。结论R2^(*)值、R2^(*)值联合病变长径、R2^(*)值联合幅度值是鉴别T2WI低信号肾脏病变良恶性的有效方法,R2^(*)值联合病变长径具有更好的诊断性能。
文摘心脏磁共振成像(cardiac magnetic resonance,CMR)过程中患者误动、异常幅度的呼吸运动、心律失常会造成CMR图像质量下降,为解决现有的CMR图像增强网络需要人为制作配对数据,且图像增强后部分组织纹理细节丢失的问题,提出了基于空频域特征学习的循环一致性生成对抗网络(cycle-consistent generative adversavial network based on spatial-frequency domain feature learning,SFFL-CycleGAN).研究结果表明,该网络无须人为制作配对数据集,增强后的CMR图像组织纹理细节丰富,在结构相似度(structural similarity,SSIM)和峰值信噪比(peak signal to noise ratio,PSNR)等方面均优于现有的配对训练网络以及原始的CycleGAN网络,图像增强效果好,有效助力病情诊断.
文摘目的基于动态对比增强MRI(dynamic contrast-enhanced MRI,DCE-MRI)和扩散峰度成像(diffusion kurtosis imaging,DKI)参数图构建影像组学模型,评估其在预测三阴性乳腺癌(triple-negative breast cancer,TNBC)中的应用价值。材料与方法回顾性分析165例乳腺癌患者病例资料,根据患者的病理结果分为非TNBC组(120例)和TNBC组(45例)。所有患者术前均接受DCE-MRI和DKI检查。按照8∶2的比例随机分为训练集(n=132)和测试集(n=33)。在第2期DCE-MRI图像、平均扩散峰度值(mean kurtosis,MK)和平均扩散率(mean diffusivity,MD)参数图中勾画出病变区域的三维感兴趣区(three-dimensional region of interest,3D ROI),并提取影像组学特征。使用K最佳、最小冗余最大相关(max-relevance and min-redundancy,mRMR)以及最小绝对收缩和选择算子回归(least absolute shrinkage and selection operator,LASSO)算法依次对特征进行降维和选择,然后,通过逻辑回归(logistic regression,LR)分类器分别建立第2期DCE-MRI模型、DKI参数图模型(MD+MK、MD、MK)及联合模型(DCE-MRI+MD+MK),并采用5折交叉验证法验证模型的稳定性。模型的预测性能通过受试者工作特征(receiver operating characteristic,ROC)曲线和曲线下面积(area under the curve,AUC)进行评估,并使用DeLong检验分析模型间的统计学差异。最后,通过决策曲线分析(decision curve analysis,DCA)评估影像组学模型在临床中的应用价值。结果从每个序列3D ROI中分别提取了2286个影像组学特征,从第2期DCE-MRI、MD+MK、MD、MK及DCE-MRI+MD+MK中分别选取了8、9、12、7、21个特征与TNBC相关。第2期DCE-MRI模型、MD+MK模型、MD模型和MK模型在测试集的AUC分别为0.810、0.769、0.676、0.625;联合模型(DCE-MRI+MD+MK)在测试集中的AUC是0.884,其准确率、敏感度和特异度分别为78.8%、79.2%和77.8%。最后,把临床特征与影像组学特征进行联合建立列线图模型。结果表明,影像组学联合模型(DCE-MRI+MD+MK)优于MD+MK模型、MD模型、MK模型及第2期DCE-MRI模型,但与列线图模型的AUC和DCA差异无统计学意义(P>0.05),表明影像组学联合模型(DCE-MRI+MD+MK)能够在临床实践中提供与列线图模型相似的诊断性能。结论基于DCE-MRI联合DKI参数图的影像组学联合模型(DCE-MRI+MD+MK)及列线图模型可以在术前有效地预测TNBC,有助于临床对TNBC的诊断、制订治疗方案及改善预后。
文摘脑卒中是全球主要的致残原因之一,可导致患者在运动、感觉及认知功能上出现障碍。传统的康复治疗周期长、见效慢,而近年来脑机接口、健侧第七颈神经移位术、脑刺激和细胞治疗等技术在卒中患者群体中的应用旨在增强脑可塑性、缓解症状,为临床提供了新的治疗思路。功能磁共振成像(functional magnetic resonance imaging,fMRI)作为脑科学重要的研究工具之一,已经广泛应用于脑卒中康复的研究中,它不仅能描述功能和网络连接变化,还能预测康复预后、指导治疗方案和监测康复效果,为脑卒中康复治疗提供了理论依据。本综述总结了近年来国内外应用fMRI技术在脑卒中康复期脑网络重塑等方面的探索,分析了相关研究成果以及存在的难点,以期为脑卒中康复治疗的fMRI研究提供新的思路。