期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别
1
作者 毛清华 苏毅楠 +3 位作者 贺高峰 翟姣 王荣泉 尚新芒 《工矿自动化》 北大核心 2025年第1期11-20,103,共11页
针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换... 针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换主干网络C2f模块为C2fER模块,加强模型的细节特征提取能力,提升模型对小目标人员的识别性能;通过在颈部网络引入特征强化加权双向特征金字塔网络(FE-BiFPN)结构,提高模型的特征融合能力,从而提升模型对多尺度人员目标的识别效果;通过引入分离增强注意力模块(SEAM)增强模型在复杂背景下对局部特征的关注度,提升模型对遮挡目标人员的识别能力;通过引入WIoU损失函数增强训练效果,提升模型识别准确率。消融实验结果表明:改进YOLOv8模型的准确率较基线模型YOLOv8s提升2.3%,mAP@0.5提升3.4%,识别速度为104帧/s。人员识别实验结果表明:与YOLOv10m,YOLOv8s-CA、YOLOv8s-SPDConv和YOLO8n模型相比,改进YOLOv8模型对小目标、多尺度目标、遮挡目标的识别效果均更佳,识别准确率为90.2%,mAP@0.5为87.2%。人员入侵危险区域实验结果表明:井下人员入侵带式输送机危险区域智能识别系统判别人员入侵危险区域的平均准确率为93.25%,满足识别需求。 展开更多
关键词 煤矿带式输送机 人员入侵危险区域 YOLOv8模型 遮挡目标检测 小目标检测 多尺度融合 C2fER模块 特征强化加权双向特征金字塔网络结构
在线阅读 下载PDF
基于改进Faster-RCNN的起重机钢丝绳表面缺陷识别方法
2
作者 苏立鹏 娄益凡 +3 位作者 杨吴奔 高建貌 王雪迎 易灿灿 《机电工程》 北大核心 2025年第7期1341-1349,共9页
针对现有的起重机钢丝绳表面缺陷检测中存在的检测效率低、准确度差、鲁棒性有限等问题,提出了一种基于改进快速区域卷积神经网络(Faster-RCNN)的起重机钢丝绳表面缺陷识别检测方法,该方法结合多个关键技术,显著提升了钢丝绳表面缺陷识... 针对现有的起重机钢丝绳表面缺陷检测中存在的检测效率低、准确度差、鲁棒性有限等问题,提出了一种基于改进快速区域卷积神经网络(Faster-RCNN)的起重机钢丝绳表面缺陷识别检测方法,该方法结合多个关键技术,显著提升了钢丝绳表面缺陷识别的性能。首先,采用了多尺度策略提高输入图像的分辨率,从而更好地检测不同大小的缺陷;其次,在网络中引入了可变形卷积,以增强其捕捉传统卷积技术难以检测的钢丝绳缺陷复杂形状特征的能力;采用了路径增强技术融合低维和高维特征,有效解决了在下采样和特征融合过程中信息丢失的问题,极大提升了模型在各层之间保持关键信息的能力;最后,采用了广义交并比(GIOU)损失函数替代传统的交并比(IOU)损失函数,显著提高了边界框预测的准确性,验证了改进后的Faster-RCNN算法在起重机钢丝绳损伤检测的性能提升方面较为显著。研究结果表明:改进版Faster-RCNN模型相比原算法在精度上有了显著提高,准确率从81.8%提升至90.2%,召回率从83.8%提高至94.2%,最终平均精度达到0.934,提升了9.6%。与传统检测算法如SSD和原版YOLOv5相比,该方法的准确率分别提高了17.6%和11.0%,证明了其在钢丝绳损伤图像识别中的有效性。 展开更多
关键词 起重机械 损伤检测 改进的快速区域卷积神经网络 多尺度和自定义锚框策略 广义交并比损失函数 可变形卷积 路径增强特征金字塔 区域提议网络 消融实验
在线阅读 下载PDF
结合残差与双注意力机制的U-Net语音增强方法 被引量:1
3
作者 许春冬 王磊 +2 位作者 胡菁兰 闵源 徐锦武 《计算机工程与设计》 北大核心 2024年第11期3383-3389,共7页
针对U-Net语音增强网络深层特征提取能力不足,以及编解码过程中特征信息丢失问题,提出一种结合残差与双注意力机制的DA-Res-Unet语音增强方法。将U-Net编解码部分设计为残差结构来深化网络,增强深层特征提取能力;在网络结构中构造双注... 针对U-Net语音增强网络深层特征提取能力不足,以及编解码过程中特征信息丢失问题,提出一种结合残差与双注意力机制的DA-Res-Unet语音增强方法。将U-Net编解码部分设计为残差结构来深化网络,增强深层特征提取能力;在网络结构中构造双注意力机制,减少时频特征提取中的细节信息丢失;在网络中融入空洞空间金字塔池化结构,在低参数量情况下融合不同尺度上下文背景信息,提高模型特征捕获能力。实验结果表明,DA-Res-Unet网络模型在可见噪声测试集上的PESQ、STOI和LSD这3种评测指标取得了不同程度的提升,在未知噪声测试集上具备一定优势。 展开更多
关键词 语音增强 深度学习 残差网络 特征提取 编解码结构 注意力机制 空洞空间池化金字塔
在线阅读 下载PDF
基于改进YOLOv5算法的绝缘子多缺陷检测 被引量:5
4
作者 伍箴燎 吴正平 孙水发 《高压电器》 CAS CSCD 北大核心 2024年第12期95-102,112,共9页
针对绝缘子多缺陷检测精度低、检测速度慢的问题,提出一种改进YOLOv5准确判别绝缘子多缺陷检测算法(YOLOv5⁃GSEM)。首先通过引入GhostNet结构替换原始网络YOLOv5主干网络C3模块,提升网络运算速度;并在SPPF后引入无参注意力模块SimAM,增... 针对绝缘子多缺陷检测精度低、检测速度慢的问题,提出一种改进YOLOv5准确判别绝缘子多缺陷检测算法(YOLOv5⁃GSEM)。首先通过引入GhostNet结构替换原始网络YOLOv5主干网络C3模块,提升网络运算速度;并在SPPF后引入无参注意力模块SimAM,增强有效特征,抑制干扰特征;其次引入增强特征金字塔网络(EFPN)和多尺度特征融合网络(multiscale feature fusion network,MFFN),充分融合多尺度特征,提升网络对绝缘子多缺陷的检测精度。实验结果表明,文中提出的模型平均精度均值(mAP0.5)达到87.8%,较YOLOv5算法提升了2.7%,检测速度提升了4.6%,该网络的提出为绝缘子多种缺陷检测问题提供一种更有效的方法。 展开更多
关键词 绝缘子多缺陷检测 注意力机制 增强特征金字塔网络 多尺度特征融合 轻量化
在线阅读 下载PDF
基于层间引导的低光照图像渐进增强算法
5
作者 黄梦源 常侃 +2 位作者 凌铭阳 韦新杰 覃团发 《计算机应用》 CSCD 北大核心 2024年第6期1911-1919,共9页
低光照图像的图像质量通常较低,低光照图像增强(LLIE)旨在提高这类图像的视觉质量。针对现有的LLIE算法大多专注增强亮度和对比度、忽略细节增强的问题,提出一个基于层间引导的低光照图像渐进增强算法(PELG),兼顾图像亮度和细节增强。首... 低光照图像的图像质量通常较低,低光照图像增强(LLIE)旨在提高这类图像的视觉质量。针对现有的LLIE算法大多专注增强亮度和对比度、忽略细节增强的问题,提出一个基于层间引导的低光照图像渐进增强算法(PELG),兼顾图像亮度和细节增强。首先,使用拉普拉斯金字塔(LP)降低任务复杂度,提高算法效率;其次,利用各频率分量间的相关性,在低频和高频分量之间构建基于Transformer的层间引导融合模块,在各高频分量之间构建轻量级的层间引导融合模块,有效精炼金字塔较低层增强信息指导较高层处理图像,实现基于层间引导的渐进增强;最后,通过LP重建亮度均匀、细节清晰的增强图像。实验结果表明,所提算法的峰值信噪比(PSNR)在LOL(LOw-Light dataset)-v1上比DSLR(Deep Stacked Laplacian Restorer)高2.3 dB,在LOL-v2上比UNIE(Unsupervised Night Image Enhancement)高0.55 dB;与其他基于深度学习的LLIE算法相比,所提算法运行速度快,增强结果在客观和主观质量上均获得明显提升,更适用于实际场景。 展开更多
关键词 低光照图像增强 拉普拉斯金字塔 特征融合 卷积神经网络 TRANSFORMER
在线阅读 下载PDF
基于改进的Faster RCNN的仪表自动识别方法 被引量:4
6
作者 王欣然 张斌 +1 位作者 湛敏 赵成龙 《机电工程》 CAS 北大核心 2024年第3期532-539,共8页
在环境复杂的工业场景中,仪表盘存在类别多、相似性高等问题,导致检测的识别效果较差、准确率不高。针对这一问题,提出了一种基于改进的更快速的区域卷积神经网络(Faster RCNN)的仪表自动识别方法。首先,采用残差网络(Resnet)101代替视... 在环境复杂的工业场景中,仪表盘存在类别多、相似性高等问题,导致检测的识别效果较差、准确率不高。针对这一问题,提出了一种基于改进的更快速的区域卷积神经网络(Faster RCNN)的仪表自动识别方法。首先,采用残差网络(Resnet)101代替视觉几何群网络(VGG)16,进行了网络结构简化;然后,引入了特征金字塔网络(FPN),并将其改进为递归特征金字塔网络后进行了迭代融合,输出了特征图;接着,引入了注意力机制模块,根据特征的重要程度,完成了对输出通道权值的重新分配,增强了Faster RCNN对目标的运算能力;提出了改进非极大值抑制算法(Softer-NMS),通过降低置信度来确定准确的目标候选框;最后,采用Mosaic数据增强技术对可视对象类(VOC)2007数据集进行了扩充,对改进后的Faster RCNN模型进行了仪表自动识别的实验。研究结果表明:在相同工业环境下,与传统的Faster RCNN算法模型相比,改进后的Faster RCNN模型准确率为93.5%,较原模型提高了3.8%,mAP值为92.6%,较原模型提高了3.7%,可见该方法在实际生产中具有较强的鲁棒性与泛化能力,可满足工业上对智能检测的要求。 展开更多
关键词 仪表识别 更快速的区域卷积神经网络 递归特征金字塔网络 注意力机制 非极大值抑制算法 Mosaic数据增强技术
在线阅读 下载PDF
面向复杂光照的舞台演员检测
7
作者 赵国庆 董天阳 +1 位作者 童程凯 沈冰雁 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第4期565-574,共10页
复杂舞台场景存在多个光源产生的偏色和光照不均匀问题,严重影响了演员检测的精度.针对上述问题,提出一种基于伪多模态融合的演员检测方法.首先随机选取一种光照处理方法构建增强图像,与原图像构成伪多模态图像对;然后在增强图像中以演... 复杂舞台场景存在多个光源产生的偏色和光照不均匀问题,严重影响了演员检测的精度.针对上述问题,提出一种基于伪多模态融合的演员检测方法.首先随机选取一种光照处理方法构建增强图像,与原图像构成伪多模态图像对;然后在增强图像中以演员关键点建立候选集合,从集合中随机选取部分关键点所在的区域构建增强补丁集合,并将补丁替换到原始图像中进行训练;最后在传统特征金字塔网络的基础上借鉴Transformer编码器的构建形式,利用视觉注意力模块构建视觉注意力编码器,强化多尺度特征的交互逻辑.在自建4543幅包含舞台演员的图像数据集上与3个模型进行组合,舞台演员检测的均值平均精度分别提升0.4%~2.9%,表明所提方法能够较好地降低偏色和不均匀光照的影响. 展开更多
关键词 目标检测 光照处理 行人检测 数据增强 特征金字塔网络
在线阅读 下载PDF
基于多尺度残差网络的对象级边缘检测算法 被引量:7
8
作者 朱威 王图强 +1 位作者 陈悦峰 何德峰 《计算机科学》 CSCD 北大核心 2020年第6期144-150,共7页
面向对象的边缘检测技术是智能视觉处理领域的关键基础技术,然而目前基于卷积神经网络的边缘检测结果存在分辨率低、噪声较多等问题。因此,文中提出了一种基于多尺度残差网络的对象级边缘检测算法。首先,设计了混合空洞卷积残差块,来替... 面向对象的边缘检测技术是智能视觉处理领域的关键基础技术,然而目前基于卷积神经网络的边缘检测结果存在分辨率低、噪声较多等问题。因此,文中提出了一种基于多尺度残差网络的对象级边缘检测算法。首先,设计了混合空洞卷积残差块,来替换原始残差网络中的普通卷积核,以放大网络的感受野;然后,设计了多尺度特征增强模块,对边缘信息进行多尺度特征提取,以放大网络的信息接受域;最后,设计了结合顶层语义特征的金字塔多尺度特征融合模块,将不同尺度下的特征信息进行融合,以输出边缘检测后的图像。为了验证所提算法的有效性,在公开数据集BSDS500上进行实验。实验结果表明,与现有算法相比,所提算法具有更好的边缘检测效果,客观指标ODS,OIS和AP分别达到了0.819,0.838和0.849,主观检测效果也更接近真实值,噪声更少。 展开更多
关键词 残差网络 空洞卷积 多尺度特征增强 金字塔特征融合结构
在线阅读 下载PDF
具有双向增强特征结构的U型肺结节分割网络 被引量:4
9
作者 黄新 郭晓敏 《计算机工程与应用》 CSCD 北大核心 2022年第24期239-246,共8页
在CT影像中精准而有效地分割出肺部结节是肺癌早期诊断的关键。然而,肺结节形态的多样性以及周围环境的复杂性,都给肺结节分割的鲁棒性带来了巨大的挑战。为提高CT影像中肺结节分割的准确性,提出了Bi EFP-UNet(bidirectional enhanced f... 在CT影像中精准而有效地分割出肺部结节是肺癌早期诊断的关键。然而,肺结节形态的多样性以及周围环境的复杂性,都给肺结节分割的鲁棒性带来了巨大的挑战。为提高CT影像中肺结节分割的准确性,提出了Bi EFP-UNet(bidirectional enhanced feature pyramid UNet)肺结节分割网络。该结构采用端到端的深度学习方法来解决肺结节的分割任务,通过在原始U-Net网络的编码器和解码器结构之间集成一个双向增强型特征金字塔网络(bidirectional enhanced feature pyramid network,Bi EFPN),加强网络对特征的传递与利用;利用Mish激活函数提高分割效率,并消除原始U-Net网络梯度消失的问题。在肺结节公开数据集LUNA16上的实验结果表明,Bi EFP-UNet网络的Dice相似系数(DSC)可达88.32%,其中,Bi EFPN结构带来的提升为5.25个百分点,Mish激活函数带来的提升为1.21个百分点;与原始U-Net网络相比,Bi EFP-UNet网络的DSC提升了6.46个百分点,能有效解决原始U-Net网络对小目标结节分割性能差、梯度消失的问题。 展开更多
关键词 CT 肺结节分割 U-Net Bi EFP-UNet 双向增强型特征金字塔网络 Mish
在线阅读 下载PDF
基于特征优化与深层次融合的目标检测算法 被引量:5
10
作者 谢誉 包梓群 +3 位作者 张娜 吴彪 涂小妹 包晓安 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第12期2403-2415,共13页
针对单阶段多边框检测算法(SSD)存在对小目标检测误差较大的问题,提出基于特征优化与深层次融合的目标检测算法,通过空间通道特征增强(SCFE)模块和深层次特征金字塔网络(DFPN)改进SSD.SCFE模块基于局部空间特征增强和全局通道特征增强... 针对单阶段多边框检测算法(SSD)存在对小目标检测误差较大的问题,提出基于特征优化与深层次融合的目标检测算法,通过空间通道特征增强(SCFE)模块和深层次特征金字塔网络(DFPN)改进SSD.SCFE模块基于局部空间特征增强和全局通道特征增强机制优化特征层,注重特征层的细节信息;DFPN基于残差空间通道增强模块改进特征金字塔网络,使不同尺度特征层进行深层次特征融合,提升目标检测精度.在训练阶段添加样本加权训练策略,使网络注重训练定位良好的样本和置信度高的样本.实验结果表明,在PASCAL VOC数据集上,所提算法在保证速度的同时检测精度由SSD的77.2%提升至79.7%;在COCO数据集上,所提算法的检测精度由SSD的25.6%提升至30.1%,对小目标的检测精度由SSD的6.8%提升至13.3%. 展开更多
关键词 目标检测 深层次特征金字塔网络(DFPN) 空间通道特征增强(SCFE) 样本加权训练 单阶段多边框检测算法(SSD)
在线阅读 下载PDF
基于深度学习的视频SAR动目标检测与跟踪算法 被引量:4
11
作者 邱磊 张学志 郝大为 《自然资源遥感》 CSCD 北大核心 2023年第2期157-166,共10页
视频合成孔径雷达(synthetic aperture Radar,SAR)技术被广泛应用于军事侦查、地质勘探和灾害预测等领域。由于SAR视频存在很多的相干斑(Speckle)噪声以及镜面反射、叠掩效应等干扰因素,运动目标容易与背景或其他目标混淆在一起。针对... 视频合成孔径雷达(synthetic aperture Radar,SAR)技术被广泛应用于军事侦查、地质勘探和灾害预测等领域。由于SAR视频存在很多的相干斑(Speckle)噪声以及镜面反射、叠掩效应等干扰因素,运动目标容易与背景或其他目标混淆在一起。针对上述问题,文章提出了一种有效的视频SAR目标检测与跟踪算法。首先,提取视频SAR的多个特征用于构造多通道特征图;然后,使用改进的轻量EfficientDet网络对更深层的特征进行提取,从而在兼顾算法效率的同时提升SAR目标检测的准确度;最后,采用基于目标检测框的轨迹关联策略对视频SAR中同一目标进行关联。实验表明,本研究提出的方法针对SAR阴影目标检测与跟踪任务取得了较好的效果。 展开更多
关键词 视频SAR 特征增强 目标检测 深度学习 特征金字塔 多目标跟踪
在线阅读 下载PDF
改进YOLOv5的沥青路面病害检测算法 被引量:10
12
作者 杨振 李林 +2 位作者 罗文婷 倪昌双 傅幼华 《计算机工程与设计》 北大核心 2023年第11期3360-3372,共13页
为提升沥青路面病害自动化识别的准确率,提出一种特征网络增强算法(YOLO-EH)。该网络包含一种可以与CBAM注意力机制进行结合的新型特征增强模块(FEM)以及一种可以对FPN添加反馈链接的新型逆向二次循环特征金字塔网络(RCFPN)。实验结果表... 为提升沥青路面病害自动化识别的准确率,提出一种特征网络增强算法(YOLO-EH)。该网络包含一种可以与CBAM注意力机制进行结合的新型特征增强模块(FEM)以及一种可以对FPN添加反馈链接的新型逆向二次循环特征金字塔网络(RCFPN)。实验结果表明,与原YOLOv5算法相比,YOLO-EH对于同一批路段数据在平均病害识别准确率上提高了2.6个百分点,验证了其准确性与有效性。 展开更多
关键词 深度学习 沥青路面病害识别 目标检测 YOLOv5 注意力机制 特征增强模块 逆向二次循环特征金字塔网络
在线阅读 下载PDF
基于改进的YOLOV3口罩佩戴检测算法 被引量:5
13
作者 张鑫 李瑞 李伟奇 《计算机工程与设计》 北大核心 2022年第5期1319-1326,共8页
为防止病毒的传播,提出一种可以识别人们在公共场合下是否佩戴口罩的目标检测算法。以YOLOV3为基础,将Darknet-53骨干网络结构与Inception-v4思想相结合,在特征提取网络中引入空间金字塔池化(spatial pyramid pooling,SPP)结构,使特征... 为防止病毒的传播,提出一种可以识别人们在公共场合下是否佩戴口罩的目标检测算法。以YOLOV3为基础,将Darknet-53骨干网络结构与Inception-v4思想相结合,在特征提取网络中引入空间金字塔池化(spatial pyramid pooling,SPP)结构,使特征得到增强,准确率得到提升;选取GIoU(generalized intersection over union)损失函数作为评价指标。实验结果表明,改进后的YOLOV3算法能够有效进行口罩佩戴检测,其算法的平均精度均值相比于原始的YOLOV3提高5.4%,达到90.1%。 展开更多
关键词 口罩佩戴检测 YOLOV3 骨干网络 特征增强 空间金字塔池化 GIoU损失函数
在线阅读 下载PDF
基于无人机航拍的绝缘子掉串实时检测研究 被引量:9
14
作者 李登攀 任晓明 颜楠楠 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第8期994-1003,共10页
由无人机代替人工进行电力绝缘子巡检具有重要意义,针对无人机的上位机算力和存储资源有限的问题,提出一种适用于绝缘子掉串故障检测的实时目标检测改进算法.以YOLOv5s检测网络为基础,将颈部结构中路径聚合网络替换为双向特征金字塔网络... 由无人机代替人工进行电力绝缘子巡检具有重要意义,针对无人机的上位机算力和存储资源有限的问题,提出一种适用于绝缘子掉串故障检测的实时目标检测改进算法.以YOLOv5s检测网络为基础,将颈部结构中路径聚合网络替换为双向特征金字塔网络,以提升特征融合能力;使用DIoU优化损失函数,对模型进行γ系数的通道剪枝和微调,总体上提升检测网络的精度、速度和部署能力;在网络输出处进行图像增强以提升算法可用性.在特殊扩增的绝缘子故障数据集下测试,相较于原始的YOLOv5s算法,改进算法在精度平均值上提升了3.91%,速度提升了25.6%,模型体积下降了59.1%. 展开更多
关键词 无人机 绝缘子掉串 双向特征金字塔网络结构 γ系数剪枝微调 DIoU损失函数 图像增强
在线阅读 下载PDF
增强特征金字塔结构的显著目标检测算法 被引量:2
15
作者 刘剑峰 潘晨 《计算机工程与应用》 CSCD 北大核心 2022年第12期226-233,共8页
显著目标检测是计算机视觉的研究热点。显著目标检测算法存在一些问题,如:算法常采用单一损失函数,缺乏对多维特征损失的考虑,可能带来局限性;最高层特征图来源单一;特征图融合常使用对应像素相加,不能有效突出图像中感兴趣区域。针对... 显著目标检测是计算机视觉的研究热点。显著目标检测算法存在一些问题,如:算法常采用单一损失函数,缺乏对多维特征损失的考虑,可能带来局限性;最高层特征图来源单一;特征图融合常使用对应像素相加,不能有效突出图像中感兴趣区域。针对上述问题,结合结构性相似、交并比和交叉熵三种损失函数来捕捉图像细节,采用对应像素相乘操作融合特征图,令模型对显著区域更加敏感;通过残差特征图增强模块逆向构建更高层特征图强化其语义信息;采用特征金字塔结构融合不同尺度信息,完成编码解码模块。在5个数据集的对比实验表明该方法性能超过主流算法,能实现有效的显著目标检测。 展开更多
关键词 显著目标检测 特征金字塔网络 残差特征图增强
在线阅读 下载PDF
基于通道注意力的轻量行人检测算法 被引量:2
16
作者 张文龙 南新元 +1 位作者 徐明明 黄家興 《现代电子技术》 2022年第16期133-138,共6页
YOLOv3算法参数量和计算量较大,不适合在移动端上使用。针对这个问题,文中通过优化YOLOv3算法提出一种基于注意力机制的轻量行人检测算法。首先,采用轻量级网络优化YOLOv3模型结构,减少模型的参数量和计算量;其次,设计下采样通道注意力... YOLOv3算法参数量和计算量较大,不适合在移动端上使用。针对这个问题,文中通过优化YOLOv3算法提出一种基于注意力机制的轻量行人检测算法。首先,采用轻量级网络优化YOLOv3模型结构,减少模型的参数量和计算量;其次,设计下采样通道注意力模块代替Darknet53中的下采样层;最后,为了进一步丰富目标特征信息,增强小尺度行人的检测能力,引入特征增强模块。在INRIA数据集上的实验结果表明,所提出方法参数量相比YOLOv3模型降低约18,模型平均准确率提高3.85%。相比其他轻量化算法,提出的算法模型复杂度更低并且检测性能更好。 展开更多
关键词 行人检测 通道注意力 YOLOv3 轻量级网络 特征增强 深度学习 残差网络 空间金字塔池化
在线阅读 下载PDF
基于深度学习的小目标检测方法综述 被引量:36
17
作者 员娇娇 胡永利 +1 位作者 孙艳丰 尹宝才 《北京工业大学学报》 CAS CSCD 北大核心 2021年第3期293-302,共10页
小目标检测一直是目标检测领域中的热点和难点,其主要挑战是小目标像素少,难以提取有效的特征信息.近年来,随着深度学习理论和技术的快速发展,基于深度学习的小目标检测取得了较大进展,研究者从网络结构、训练策略、数据处理等方面入手... 小目标检测一直是目标检测领域中的热点和难点,其主要挑战是小目标像素少,难以提取有效的特征信息.近年来,随着深度学习理论和技术的快速发展,基于深度学习的小目标检测取得了较大进展,研究者从网络结构、训练策略、数据处理等方面入手,提出了一系列用于提高小目标检测性能的方法.该文对基于深度学习的小目标检测方法进行详细综述,按照方法原理将现有的小目标检测方法分为基于多尺度预测、基于数据增强技术、基于提高特征分辨率、基于上下文信息,以及基于新的主干网络和训练策略等5类方法,全面分析总结基于深度学习的小目标检测方法的研究现状和最新进展,对比分析这些方法的特点和性能,并介绍常用的小目标检测数据集.在总体梳理小目标检测方法的研究进展的基础上,对未来的研究方向进行展望. 展开更多
关键词 深度学习 目标检测 小目标检测 特征金字塔 上下文 数据增强
在线阅读 下载PDF
基于轻量化卷积神经网络的疲劳驾驶检测 被引量:12
18
作者 程泽 林富生 +1 位作者 靳朝 周鼎贺 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第2期142-150,共9页
针对现有疲劳驾驶检测模型在判定准确性与实时性上的不平衡问题,设计了一种基于轻量化卷积神经网络EMLite-Yolo-V4的检测模型。通过使用MobileNet-V2作为目标检测网络Yolo-V4的主干特征提取网络,并且降低卷积通道系数alpha,使得网络参... 针对现有疲劳驾驶检测模型在判定准确性与实时性上的不平衡问题,设计了一种基于轻量化卷积神经网络EMLite-Yolo-V4的检测模型。通过使用MobileNet-V2作为目标检测网络Yolo-V4的主干特征提取网络,并且降低卷积通道系数alpha,使得网络参数量大幅度下降;改进柔性非极大值抑制使得目标框无需再同时考虑得分与重合度,进一步优化检测速率;加入轻量级特征金字塔FPN-tiny并且融合mosaic数据增强方法,以保证模型的检测精度。最后,利用EMLite-Yolo-V4提取面部疲劳特征,PERCLOS与单位时间打哈欠次数对疲劳特征进行状态判定并输出结果。实验表明:该检测模型的准确率达到97.39%,mAP指标为80.02%,单帧检测速度为20.83 ms,模型大小仅为9 MB,有效平衡了疲劳驾驶检测的准确性与实时性。 展开更多
关键词 疲劳驾驶检测 轻量化卷积神经网络 轻量级特征金字塔 柔性非极大值抑制 数据增强
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部