Rehabilitation engineering aims in the upmost degree to restore the lost functions for those persons with physical disability. Biomechanical modeling has been widely used for different purposes in rehabilitation engin...Rehabilitation engineering aims in the upmost degree to restore the lost functions for those persons with physical disability. Biomechanical modeling has been widely used for different purposes in rehabilitation engineering to understand the bio-展开更多
Volumetric efficiency and air charge estimation is one of the most demanding tasks in control of today's internal combustion engines.Specifically,using three-way catalytic converter involves strict control of the ...Volumetric efficiency and air charge estimation is one of the most demanding tasks in control of today's internal combustion engines.Specifically,using three-way catalytic converter involves strict control of the air/fuel ratio around the stoichiometric point and hence requires an accurate model for air charge estimation.However,high degrees of complexity and nonlinearity of the gas flow in the internal combustion engine make air charge estimation a challenging task.This is more obvious in engines with variable valve timing systems in which gas flow is more complex and depends on more functional variables.This results in models that are either quite empirical(such as look-up tables),not having interpretability and extrapolation capability,or physically based models which are not appropriate for onboard applications.Solving these problems,a novel semi-empirical model was proposed in this work which only needed engine speed,load,and valves timings for volumetric efficiency prediction.The accuracy and generalizability of the model is shown by its test on numerical and experimental data from three distinct engines.Normalized test errors are 0.0316,0.0152 and 0.24 for the three engines,respectively.Also the performance and complexity of the model were compared with neural networks as typical black box models.While the complexity of the model is less than half of the complexity of neural networks,and its computational cost is approximately 0.12 of that of neural networks and its prediction capability in the considered case studies is usually more.These results show the superiority of the proposed model over conventional black box models such as neural networks in terms of accuracy,generalizability and computational cost.展开更多
In order to study the major performance indicators of the twin-rotor piston engine(TRPE), Matlab/simulink was used to simulate the mathematical models of its thermodynamic processes. With consideration of the characte...In order to study the major performance indicators of the twin-rotor piston engine(TRPE), Matlab/simulink was used to simulate the mathematical models of its thermodynamic processes. With consideration of the characteristics of the working processes in the TRPE, corresponding differential equations were established and then simplified by period features of the TRPE. Finally, the major boundary conditions were figured out. The changing trends of mass, pressure and temperature of working fuel in the working chamber during a complete engine cycle were presented. The simulation results are consistent with the trends of an actual working cycle in the TRPE, which indicates that the method of simulation is feasible. As the pressure in the working chamber is calculated, all the performance parameters of the TRPE can be obtained. The major performance indicators, such as the indicated mean effective pressure, power to weight ratio and the volume power, are also acquired. Compared with three different types of conventional engines, the TRPE has a bigger utilization ratio of cylinder volume, a higher power to weight ratio and a more compact structure. This indicates that TRPE is superior to conventional engines.展开更多
基于IEEE及国际系统工程协会(International Council on Systems Engineering,INCOSE)社区会刊,提取与基于模型的系统工程(model based systems engineering,MBSE)领域相关的167篇顶刊的关键词和摘要。采用Python及其第三方库WordCloud...基于IEEE及国际系统工程协会(International Council on Systems Engineering,INCOSE)社区会刊,提取与基于模型的系统工程(model based systems engineering,MBSE)领域相关的167篇顶刊的关键词和摘要。采用Python及其第三方库WordCloud技术,以可视化形式展示MBSE领域研究内容并对MBSE发展态势进行研究。研究结果表明,MBSE在产品研发全生命周期,应用建模技术来支持系统需求、设计、分析、验证与确认等活动,在系统架构设计方面具有重要作用,将MBSE与安全性分析、可靠性分析方法结合也是MBSE的重要研究内容;系统建模语言(system modeling language,SysML)和对象过程方法(object process method,OPM)分别是目前MBSE研究领域中最受欢迎的建模语言和建模方法;将MBSE方法与本体进行结合是规范MBSE模型表达的重要手段,将MBSE与信息物理系统、数字孪生、并行工程领域进行融合研究是MBSE的重要发展方向。所提研究为使用WordCloud文本分析技术来探索当前的MBSE研究提供了技术路线参考,有助于对MBSE的未来发展态势进行预测。展开更多
There are great differences in the distribution characteristics of shock waves produced by ammunition explosions at different altitudes.At present,there are many studies on plain explosion shock waves,but there are fe...There are great differences in the distribution characteristics of shock waves produced by ammunition explosions at different altitudes.At present,there are many studies on plain explosion shock waves,but there are few studies on the distribution characteristics of plateau explosion shock waves,and there is still a lack of complete analysis and evaluation methods.This paper compares and analyzes shock wave overpressure data at different altitudes,obtains the attenuation effect of different altitudes on the shock wave propagation process and proposes a calculation formula for shock wave overpressure considering the effect of altitude.The data analysis results show that at the same TNT equivalent and the same distance from the measuring point,the shock wave overpressure at high altitude is lower than that at low altitude.With the increase in the explosion center distance of the measuring point,the peak attenuation rate of the shock wave overpressure at high altitudes is smaller than that at low altitudes,and the peak attenuation rate of the shock wave overpressure at high altitudes gradually intensifies with increasing proportional distance.The average error between the shock wave overpressure and measured shock wave overpressure in a high-altitude environment obtained by using the above calculation formula is 11.1389%.Therefore,this method can effectively predict explosion shock wave overpressure in plateau environments and provides an effective calculation method for practical engineering tests.展开更多
基金Research Grant Council of Hong Kong (GRF Project nos PolyU5331 /07E,PolyU5352 /08E)a grant from Ministry of Sciences and Technology,China (No 2006BAI22B00)
文摘Rehabilitation engineering aims in the upmost degree to restore the lost functions for those persons with physical disability. Biomechanical modeling has been widely used for different purposes in rehabilitation engineering to understand the bio-
文摘Volumetric efficiency and air charge estimation is one of the most demanding tasks in control of today's internal combustion engines.Specifically,using three-way catalytic converter involves strict control of the air/fuel ratio around the stoichiometric point and hence requires an accurate model for air charge estimation.However,high degrees of complexity and nonlinearity of the gas flow in the internal combustion engine make air charge estimation a challenging task.This is more obvious in engines with variable valve timing systems in which gas flow is more complex and depends on more functional variables.This results in models that are either quite empirical(such as look-up tables),not having interpretability and extrapolation capability,or physically based models which are not appropriate for onboard applications.Solving these problems,a novel semi-empirical model was proposed in this work which only needed engine speed,load,and valves timings for volumetric efficiency prediction.The accuracy and generalizability of the model is shown by its test on numerical and experimental data from three distinct engines.Normalized test errors are 0.0316,0.0152 and 0.24 for the three engines,respectively.Also the performance and complexity of the model were compared with neural networks as typical black box models.While the complexity of the model is less than half of the complexity of neural networks,and its computational cost is approximately 0.12 of that of neural networks and its prediction capability in the considered case studies is usually more.These results show the superiority of the proposed model over conventional black box models such as neural networks in terms of accuracy,generalizability and computational cost.
基金Project(7131109)supported by the National Defense Pre-research Foundation of ChinaProject(51175500)supported by the National Natural Science Foundation of China
文摘In order to study the major performance indicators of the twin-rotor piston engine(TRPE), Matlab/simulink was used to simulate the mathematical models of its thermodynamic processes. With consideration of the characteristics of the working processes in the TRPE, corresponding differential equations were established and then simplified by period features of the TRPE. Finally, the major boundary conditions were figured out. The changing trends of mass, pressure and temperature of working fuel in the working chamber during a complete engine cycle were presented. The simulation results are consistent with the trends of an actual working cycle in the TRPE, which indicates that the method of simulation is feasible. As the pressure in the working chamber is calculated, all the performance parameters of the TRPE can be obtained. The major performance indicators, such as the indicated mean effective pressure, power to weight ratio and the volume power, are also acquired. Compared with three different types of conventional engines, the TRPE has a bigger utilization ratio of cylinder volume, a higher power to weight ratio and a more compact structure. This indicates that TRPE is superior to conventional engines.
文摘基于IEEE及国际系统工程协会(International Council on Systems Engineering,INCOSE)社区会刊,提取与基于模型的系统工程(model based systems engineering,MBSE)领域相关的167篇顶刊的关键词和摘要。采用Python及其第三方库WordCloud技术,以可视化形式展示MBSE领域研究内容并对MBSE发展态势进行研究。研究结果表明,MBSE在产品研发全生命周期,应用建模技术来支持系统需求、设计、分析、验证与确认等活动,在系统架构设计方面具有重要作用,将MBSE与安全性分析、可靠性分析方法结合也是MBSE的重要研究内容;系统建模语言(system modeling language,SysML)和对象过程方法(object process method,OPM)分别是目前MBSE研究领域中最受欢迎的建模语言和建模方法;将MBSE方法与本体进行结合是规范MBSE模型表达的重要手段,将MBSE与信息物理系统、数字孪生、并行工程领域进行融合研究是MBSE的重要发展方向。所提研究为使用WordCloud文本分析技术来探索当前的MBSE研究提供了技术路线参考,有助于对MBSE的未来发展态势进行预测。
文摘There are great differences in the distribution characteristics of shock waves produced by ammunition explosions at different altitudes.At present,there are many studies on plain explosion shock waves,but there are few studies on the distribution characteristics of plateau explosion shock waves,and there is still a lack of complete analysis and evaluation methods.This paper compares and analyzes shock wave overpressure data at different altitudes,obtains the attenuation effect of different altitudes on the shock wave propagation process and proposes a calculation formula for shock wave overpressure considering the effect of altitude.The data analysis results show that at the same TNT equivalent and the same distance from the measuring point,the shock wave overpressure at high altitude is lower than that at low altitude.With the increase in the explosion center distance of the measuring point,the peak attenuation rate of the shock wave overpressure at high altitudes is smaller than that at low altitudes,and the peak attenuation rate of the shock wave overpressure at high altitudes gradually intensifies with increasing proportional distance.The average error between the shock wave overpressure and measured shock wave overpressure in a high-altitude environment obtained by using the above calculation formula is 11.1389%.Therefore,this method can effectively predict explosion shock wave overpressure in plateau environments and provides an effective calculation method for practical engineering tests.