To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al...To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality.展开更多
The influence of ocean environment on navigation of autonomous underwater vehicle(AUV)cannot be ignored.In the marine environment,ocean currents,internal waves,and obstacles are usually considered in AUV path planning...The influence of ocean environment on navigation of autonomous underwater vehicle(AUV)cannot be ignored.In the marine environment,ocean currents,internal waves,and obstacles are usually considered in AUV path planning.In this paper,an improved particle swarm optimization(PSO)is proposed to solve three problems,traditional PSO algorithm is prone to fall into local optimization,path smoothing is always carried out after all the path planning steps,and the path fitness function is so simple that it cannot adapt to complex marine environment.The adaptive inertia weight and the“active”particle of the fish swarm algorithm are established to improve the global search and local search ability of the algorithm.The cubic spline interpolation method is combined with PSO to smooth the path in real time.The fitness function of the algorithm is optimized.Five evaluation indexes are comprehensively considered to solve the three-demensional(3D)path planning problem of AUV in the ocean currents and internal wave environment.The proposed method improves the safety of the path planning and saves energy.展开更多
Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV...Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.展开更多
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro...Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method.展开更多
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on...To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.展开更多
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ...Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.展开更多
Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ...Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path plannin...This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap.The classical approaches such as cell decomposition(CD),roadmap approach(RA),artificial potential field(APF);reactive approaches such as genetic algorithm(GA),fuzzy logic(FL),neural network(NN),firefly algorithm(FA),particle swarm optimization(PSO),ant colony optimization(ACO),bacterial foraging optimization(BFO),artificial bee colony(ABC),cuckoo search(CS),shuffled frog leaping algorithm(SFLA)and other miscellaneous algorithms(OMA)are considered for study.The navigation over static and dynamic condition is analyzed(for single and multiple robot systems)and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches.It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm.Hence,reactive approaches are more popular and widely used for path planning of mobile robot.The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics.展开更多
Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mo...Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches.展开更多
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le...This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.展开更多
The problem of passive detection discussed in this paper involves searching and locating an aerial emitter by dualaircraft using passive radars. In order to improve the detection probability and accuracy, a fuzzy Q le...The problem of passive detection discussed in this paper involves searching and locating an aerial emitter by dualaircraft using passive radars. In order to improve the detection probability and accuracy, a fuzzy Q learning algorithrn for dual-aircraft flight path planning is proposed. The passive detection task model of the dual-aircraft is set up based on the partition of the target active radar's radiation area. The problem is formulated as a Markov decision process (MDP) by using the fuzzy theory to make a generalization of the state space and defining the transition functions, action space and reward function properly. Details of the path planning algorithm are presented. Simulation results indicate that the algorithm can provide adaptive strategies for dual-aircraft to control their flight paths to detect a non-maneuvering or maneu- vering target.展开更多
The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the prop...The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability.展开更多
An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing t...An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing the second order Approximate Voronoi Boundary Network after adding virtual obstacles at joint-close grids. Thismethod embodies the network structure of the free area of environment with less nodes, so the complexity of pathplanning problem is reduced largely. An optimized path for mobile robot under complex environment is obtainedthrough the Genetic Algorithm based on the elitist rule and re-optimized by using the path-tightening method. Sincethe elitist one has the only authority of crossover, the management of one group becomes simple, which makes forobtaining the optimized path quickly. The Approximate Voronoi Boundary Network has a good tolerance to the im-precise a priori information and the noises of sensors under complex environment. Especially it is robust in dealingwith the local or partial changes, so a small quantity of dynamic obstacles is difficult to alter the overall character ofits connectivity, which means that it can also be adopted in dynamic environment by fusing the local path planning.展开更多
In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the PO...In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the POMDP framework. The elements of the POMDP model are analyzed and described. The state transfer law in the model can be described by the method of interactive multiple model (IMM) due to the diversity of the target motion law, which is used to switch the motion model to accommodate target maneuvers, and hence improving the tracking accuracy. The simulation results show that the model can achieve efficient planning for the UAV route, and effective tracking for the target. Furthermore, the path planned by this model is more reasonable and efficient than that by using the single state transition law.展开更多
Multiple UAVs are usually deployed to provide robustness through redundancy and to accomplish surveillance,search,attack and rescue missions.Formation reconfiguration was inevitable during the flight when the mission ...Multiple UAVs are usually deployed to provide robustness through redundancy and to accomplish surveillance,search,attack and rescue missions.Formation reconfiguration was inevitable during the flight when the mission was adjusted or the environment varied.Taking the typical formation reconfiguration from a triangular penetrating formation to a circular tracking formation for example,a path planning method based on Dubins trajectory and particle swarm optimization(PSO)algorithm is presented in this paper.The mathematic model of multiple UAVs formation reconfiguration was built firstly.According to the kinematic model of aerial vehicles,a process of dimensionality reduction was carried out to simplify the model based on Dubins trajectory.The PSO algorithm was adopted to resolve the optimization problem of formation reconfiguration path planning.Finally,the simulation and vehicles flight experiment are executed.Results show that the path planning method based on the Dubins trajectory and the PSO algorithm can generate feasible paths for vehicles on time,to guarantee the rapidity and effectiveness of formation reconfigurations.Furthermore,from the simulation results,the method is universal and could be extended easily to the path planning problem for different kinds of formation reconfigurations.展开更多
For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will br...For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will bring trouble for cooperative manned helicopters.In this paper,we propose a new way of tracking,where an unmanned aerial vehicle(UAV) circles on one side of the tracked target.A circular path algorithm is developed for monitoring the relative position between the UAV and the target considering the real-time range and the bearing angle.This can determine the center of the new circular path if the predicted range between the UAV and the target does not meet the monitoring requirements.A transition path algorithm is presented for planning the transition path between circular paths that constrain the turning radius of the UAV.The transition path algorithm can generate waypoints that meet the flight ability.In this paper,we analyze the entire method and detail the scope of applications.We formulate an observation angle as an evaluation index.A series of simulations and evaluation index comparisons verify the effectiveness of the proposed algorithms.展开更多
Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is t...Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.展开更多
Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, concepti...Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path.展开更多
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ...A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.展开更多
基金supported by Hunan Provincial Natural Science Foundation(2024JJ5173,2023JJ50047)Hunan Provincial Department of Education Scientific Research Project(23A0494)Hunan Provincial Innovation Foundation for Postgraduate(CX20231221).
文摘To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality.
基金supported by the High-tech Ship Projects of the Ministry of Industry and Information Technology of China(2021-342).
文摘The influence of ocean environment on navigation of autonomous underwater vehicle(AUV)cannot be ignored.In the marine environment,ocean currents,internal waves,and obstacles are usually considered in AUV path planning.In this paper,an improved particle swarm optimization(PSO)is proposed to solve three problems,traditional PSO algorithm is prone to fall into local optimization,path smoothing is always carried out after all the path planning steps,and the path fitness function is so simple that it cannot adapt to complex marine environment.The adaptive inertia weight and the“active”particle of the fish swarm algorithm are established to improve the global search and local search ability of the algorithm.The cubic spline interpolation method is combined with PSO to smooth the path in real time.The fitness function of the algorithm is optimized.Five evaluation indexes are comprehensively considered to solve the three-demensional(3D)path planning problem of AUV in the ocean currents and internal wave environment.The proposed method improves the safety of the path planning and saves energy.
基金National Natural Science Foundation of China(Grant No.52472417)to provide fund for conducting experiments.
文摘Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.
文摘Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method.
基金supported by the Natural Science Basic Research Prog ram of Shaanxi(2022JQ-593)。
文摘To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.
基金supported by the National Natural Science Foundation of China (61903036, 61822304)Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)。
文摘Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.
文摘Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap.The classical approaches such as cell decomposition(CD),roadmap approach(RA),artificial potential field(APF);reactive approaches such as genetic algorithm(GA),fuzzy logic(FL),neural network(NN),firefly algorithm(FA),particle swarm optimization(PSO),ant colony optimization(ACO),bacterial foraging optimization(BFO),artificial bee colony(ABC),cuckoo search(CS),shuffled frog leaping algorithm(SFLA)and other miscellaneous algorithms(OMA)are considered for study.The navigation over static and dynamic condition is analyzed(for single and multiple robot systems)and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches.It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm.Hence,reactive approaches are more popular and widely used for path planning of mobile robot.The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics.
文摘Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches.
基金supported by the National Natural Science Foundation of China(6167321461673217+2 种基金61673219)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB120011)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19_0299)
文摘This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.
基金supported by the National Natural Science Foundation of China(60874040)
文摘The problem of passive detection discussed in this paper involves searching and locating an aerial emitter by dualaircraft using passive radars. In order to improve the detection probability and accuracy, a fuzzy Q learning algorithrn for dual-aircraft flight path planning is proposed. The passive detection task model of the dual-aircraft is set up based on the partition of the target active radar's radiation area. The problem is formulated as a Markov decision process (MDP) by using the fuzzy theory to make a generalization of the state space and defining the transition functions, action space and reward function properly. Details of the path planning algorithm are presented. Simulation results indicate that the algorithm can provide adaptive strategies for dual-aircraft to control their flight paths to detect a non-maneuvering or maneu- vering target.
基金Project(61173032)supported by the National Natural Science Foundation of ChinaProject(20090406)supported by the Tianjin Scientific and Technological Development Fund of Higher Education of China
文摘The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability.
基金Project (60234030) supported by the National Natural Science Foundation of China
文摘An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing the second order Approximate Voronoi Boundary Network after adding virtual obstacles at joint-close grids. Thismethod embodies the network structure of the free area of environment with less nodes, so the complexity of pathplanning problem is reduced largely. An optimized path for mobile robot under complex environment is obtainedthrough the Genetic Algorithm based on the elitist rule and re-optimized by using the path-tightening method. Sincethe elitist one has the only authority of crossover, the management of one group becomes simple, which makes forobtaining the optimized path quickly. The Approximate Voronoi Boundary Network has a good tolerance to the im-precise a priori information and the noises of sensors under complex environment. Especially it is robust in dealingwith the local or partial changes, so a small quantity of dynamic obstacles is difficult to alter the overall character ofits connectivity, which means that it can also be adopted in dynamic environment by fusing the local path planning.
基金supported by the Aeronautical Science Foundation of China(20135153031 20135553035 2017ZC53033)
文摘In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the POMDP framework. The elements of the POMDP model are analyzed and described. The state transfer law in the model can be described by the method of interactive multiple model (IMM) due to the diversity of the target motion law, which is used to switch the motion model to accommodate target maneuvers, and hence improving the tracking accuracy. The simulation results show that the model can achieve efficient planning for the UAV route, and effective tracking for the target. Furthermore, the path planned by this model is more reasonable and efficient than that by using the single state transition law.
基金Project (61703414) supported by the National Natural Science Foundation of ChinaProject (3101047) supported by the Defense Science and Technology Foundation of China+1 种基金Project (2017JJ3366) supported by the Natural Science Foundation of Hunan ChinaProject (2015M582881) supported by the China Postdoctoral Science Foundation
文摘Multiple UAVs are usually deployed to provide robustness through redundancy and to accomplish surveillance,search,attack and rescue missions.Formation reconfiguration was inevitable during the flight when the mission was adjusted or the environment varied.Taking the typical formation reconfiguration from a triangular penetrating formation to a circular tracking formation for example,a path planning method based on Dubins trajectory and particle swarm optimization(PSO)algorithm is presented in this paper.The mathematic model of multiple UAVs formation reconfiguration was built firstly.According to the kinematic model of aerial vehicles,a process of dimensionality reduction was carried out to simplify the model based on Dubins trajectory.The PSO algorithm was adopted to resolve the optimization problem of formation reconfiguration path planning.Finally,the simulation and vehicles flight experiment are executed.Results show that the path planning method based on the Dubins trajectory and the PSO algorithm can generate feasible paths for vehicles on time,to guarantee the rapidity and effectiveness of formation reconfigurations.Furthermore,from the simulation results,the method is universal and could be extended easily to the path planning problem for different kinds of formation reconfigurations.
基金the Deanship of Scientific Research at King Saud University through research group number(RG-1440-048)。
文摘For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will bring trouble for cooperative manned helicopters.In this paper,we propose a new way of tracking,where an unmanned aerial vehicle(UAV) circles on one side of the tracked target.A circular path algorithm is developed for monitoring the relative position between the UAV and the target considering the real-time range and the bearing angle.This can determine the center of the new circular path if the predicted range between the UAV and the target does not meet the monitoring requirements.A transition path algorithm is presented for planning the transition path between circular paths that constrain the turning radius of the UAV.The transition path algorithm can generate waypoints that meet the flight ability.In this paper,we analyze the entire method and detail the scope of applications.We formulate an observation angle as an evaluation index.A series of simulations and evaluation index comparisons verify the effectiveness of the proposed algorithms.
文摘Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.
基金Projects(60234030, 60404021) supported by the National Natural Science Foundation of China
文摘Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path.
文摘A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.