To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,th...To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree.展开更多
In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design...In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA & REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM.展开更多
To protect passengers, absorb enough kinetic energy and meet the special requirements for trains which are different from the other means of transportation, a method is presented to realize the plastic deformation thr...To protect passengers, absorb enough kinetic energy and meet the special requirements for trains which are different from the other means of transportation, a method is presented to realize the plastic deformation threshold based on three main aspects of train connection structure, crashworthy vehicle structure, energy-absorbing component. In practical engineering, trains need enough strength and stiffness to transfer longitudinal force under the normal operation condition, and have to produce controllable large plastic dcfbrmation to absorb energy shortly under the collision condition. To realize the structural damage threshold of connecting structure in terminal end, two control methods are also proposed which can be divided as the parametric method based on 'extrusion' and 'cutting' theories; the method which can cut the connecting components between coupler-buffer devices and train bodies and separate them away when the damage thresholds of coupler-buffer devices are more than the pre-supposed damage thresholds. The damage thresholds can be realized based on changing the parameters of the number of shearing bolts, material parameters, etc. To realize the collision threshold of energy-absorbing components of trains, a control method is presented based on the ways of setting plastic deformation induced structure, local hole and pre-deformation structure. To realize the threshold of the controllable plastic structure of energy-absorbing vehicles, a control method is proposed for the multi-level longitudinal stiffness of train terminal structures.展开更多
基金Project(2019SDZY02)supported by the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research Development Program,ChinaProject(51904165)supported by the National Natural Science Foundation of ChinaProject(ZR2019QEE026)supported by the Shandong Provincial Natural Science Foundation,China。
文摘To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree.
基金Project(U1334208)supported by the National Natural Science Foundation of ChinaProject(2013GK2001)supported by the Fund of Hunan Provincial Science and Technology Department,China
文摘In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA & REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM.
基金Project(2005J002) supported by the Foundation of the Science and Technology Section of the Ministry of Railway of China
文摘To protect passengers, absorb enough kinetic energy and meet the special requirements for trains which are different from the other means of transportation, a method is presented to realize the plastic deformation threshold based on three main aspects of train connection structure, crashworthy vehicle structure, energy-absorbing component. In practical engineering, trains need enough strength and stiffness to transfer longitudinal force under the normal operation condition, and have to produce controllable large plastic dcfbrmation to absorb energy shortly under the collision condition. To realize the structural damage threshold of connecting structure in terminal end, two control methods are also proposed which can be divided as the parametric method based on 'extrusion' and 'cutting' theories; the method which can cut the connecting components between coupler-buffer devices and train bodies and separate them away when the damage thresholds of coupler-buffer devices are more than the pre-supposed damage thresholds. The damage thresholds can be realized based on changing the parameters of the number of shearing bolts, material parameters, etc. To realize the collision threshold of energy-absorbing components of trains, a control method is presented based on the ways of setting plastic deformation induced structure, local hole and pre-deformation structure. To realize the threshold of the controllable plastic structure of energy-absorbing vehicles, a control method is proposed for the multi-level longitudinal stiffness of train terminal structures.