期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Application of empirical mode decomposition based energy ratio to vortex flowmeter state diagnosis 被引量:4
1
作者 孙志强 张宏建 《Journal of Central South University》 SCIE EI CAS 2009年第1期154-159,共6页
To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into i... To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into intrinsic mode functions using the empirical mode decomposition approach. Based on the empirical mode decomposition results, the energy of each intrinsic mode function was extracted, and the vortex energy ratio was proposed to analyze how the perturbation in the flow affected the measurement performance of the vortex flowmeter. The relationship between the vortex energy ratio of the signal and the flow condition was established. The results show that the vortex energy ratio is sensitive to the flow condition and ideal for the characterization of the vortex flowmeter signal. Moreover, the vortex energy ratio under normal flow condition is greater than 80%, which can be adopted as an indicator to diagnose the state of a vortex flowmeter. 展开更多
关键词 flow state diagnosis energy ratio vortex flowmeter empirical mode decomposition
在线阅读 下载PDF
Economic feasibility and efficiency enhancement approaches for in situ upgrading of low-maturity organic-rich shale from an energy consumption ratio perspective
2
作者 LU Shuangfang WANG Jun +5 位作者 LI Wenbiao CAO Yixin CHEN Fangwen LI Jijun XUE Haitao WANG Min 《地学前缘》 EI CAS CSCD 北大核心 2023年第1期281-295,共15页
The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required ... The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required to heat shale,its economic feasibility is still a matter of debate and has yet to be convincingly demonstrated quantitatively.Based on the energy conservation law,the energy acquisition of oil and gas generation and the energy consumption of organic matter cracking,shale heat-absorption,and surrounding rock heat dissipation during in situ heating were evaluated in this study.The energy consumption ratios for different conditions were determined,and the factors that influence them were analyzed.The results show that the energy consumption ratio increases rapidly with increasing total organic carbon(TOC)content.For oil-prone shales,the TOC content corresponding to an energy consumption ratio of 3 is approximately 4.2%.This indicates that shale with a high TOC content can be expected to reduce the project cost through large-scale operation,making the energy consumption ratio after consideration of the project cost greater than 1.In situ heating and upgrading technology can achieve economic benefits.The main methods for improving the economic feasibility by analyzing factors that influence the energy consumption ratio include the following:(1)exploring technologies that efficiently heat shale but reduce the heat dissipation of surrounding rocks,(2)exploring technologies for efficient transformation of organic matter into oil and gas,i.e.,exploring technologies with catalytic effects,or the capability to reduce in situ heating time,and(3)establishing a horizontal well deployment technology that comprehensively considers the energy consumption ratio,time cost,and engineering cost. 展开更多
关键词 shale gas content in situ upgrading energy consumption ratio high-efficiency heating efficient organic matter transformation
在线阅读 下载PDF
Load-bearing characteristics and energy evolution of fractured rock masses after granite and sandstone grouting
3
作者 WU Xu-kun ZHAO Guang-ming +4 位作者 MENG Xiang-rui LIU Chong-yan LIU Zhi-xi HUANG Shun-jie ZHANG Qi-hang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2810-2825,共16页
Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of ... Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of fractured rock mass.The strength and deformation features of grouting-reinforced rock mass were analyzed under different loading manners;the energy evolution mechanism of grouting-reinforced rock mass specimens with different particle sizes and features was investigated;the energy dissipation ratio and post-peak stress decreasing rate were employed to evaluate the bearing stability of grouting-reinforced rock mass.The results show that the strength and ductility of granite-reinforced rock mass(GRM)under biaxial loading are higher than that of sandstone-reinforced rock mass(SRM)under uniaxial loading.Besides,the energy evolution characteristics of grouting-reinforced rock mass under uniaxial and biaxial loading mainly could be divided into early,middle,and late stages.In the early stage,total,elastic,and dissipation energies were quite small with flatter curves;in the middle stage,elastic energy increased rapidly,whereas dissipation energy increased slowly;in the late stage,dissipation energy increased sharply.The energy dissipation ratio was used to represent the pre-peak plastic deformation.Under uniaxial loading,this ratio increased as the particle size increased and the pre-peak plastic deformation of grouting-reinforced rock mass became larger;under biaxial loading,it dropped as the particle size increased,and the pre-peak plastic deformation of grouting-reinforced rock mass became smaller.The post-peak stress decline rate A_(v) was used to assess the post-peak bearing performance of grouting-reinforced rock mass.Under uniaxial loading,parameter A_(v) exhibited reduction as the particle size kept increasing,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was greater,and the bearing capacity was greater;under biaxial loading,A_(v) increased with the particle size,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was low and the bearing capacity was reduced.The findings are considered instrumental in improving the stability of the roadway-surrounding rock by granite and sandstone grouting. 展开更多
关键词 grouting-reinforced rock mass particle size energy dissipation ratio post-peak stress decreasing rate load-bearing characteristics
在线阅读 下载PDF
Effect of magnesium slag and blast furnace slag as partial cement substitutes on properties of cemented tailings backfill
4
作者 YANG Jian YANG Xiao-bing +3 位作者 YAN Ze-peng YIN Sheng-hua ZHANG Xi-zhi QI Yao-bin 《Journal of Central South University》 2025年第7期2696-2716,共21页
Utilizing mine solid waste as a partial cement substitute(CS)to develop new cementitious materials is a significant technological innovation that will decrease the expenses associated with filling mining.To realize th... Utilizing mine solid waste as a partial cement substitute(CS)to develop new cementitious materials is a significant technological innovation that will decrease the expenses associated with filling mining.To realize the resource utilization of magnesium slag(MS)and blast furnace slag(BFS),the effects of different contents of MS and BFS as partial CSs on the deformation and energy characteristics of cemented tailings backfill on different curing ages(3,7,and 28 d)were discussed.Meanwhile,the destabilization failure energy criterion of the backfill was established from the direction of energy change.The results show that the strength of all backfills increased with increasing curing age,and the strengths of the backfills exceeded 1.342 MPa on day 28.The backfill with 50%BFS+50%cement has the best performance in mechanical properties(the maximum strength can reach 6.129 MPa)and is the best choice among these CS combinations.The trend in peak strain and elastic modulus of the backfill with increasing curing age may vary depending on the CS combination.The energy index at peak stress of the backfill with BFS as a partial CS was significantly higher than that of the backfill under other CS combinations.In contrast,the enhancement of the energy index when MS was used as a partial CS was not as significant as BFS.Sharp changes in the energy consumption ratio after continuous smooth changes can be used as a criterion for destabilization and failure of the backfill.The research results can provide guidance for the application of MS and BFS as partial CSs in mine filling. 展开更多
关键词 cemented tailings backfill cement substitute curing age mechanical properties energy evolution energy consumption ratio
在线阅读 下载PDF
An improved joint method for onset picking of acoustic emission signals with noise 被引量:5
5
作者 ZHOU Zi-long CHENG Rui-shan +2 位作者 CHEN Lian-jun ZHOU Jing CAI Xin 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2878-2890,共13页
The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on th... The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on the discrete wavelet transform(DWT),modified energy ratio(MER)and Akaike information criterion(AIC)pickers,has been proposed in this study.First,the DWT is used to decompose the signal into various components.Then,the joint application of MER and AIC pickers is carried out to pick the initial onset times of all selected components,where the minimum AIC position ahead of MER onset time is regarded as the initial onset time.Last,the average for initial onset times of all selected components is calculated as the final onset time of this signal.This improved joint method is tested and validated by the acoustic signals with different signal to noise ratios(SNRs)and waveforms.The results show that the improved joint method is not affected by the variations of SNR,and the onset times picked by this method are always accurate in different SNRs.Moreover,the onset times of all acoustic signals with spikes,heavy bodies and unclear takeoffs can be accurately picked by the improved joint method.Compared to some other methods including MER,AIC,DWT-MER and DWT-AIC,the improved joint method has better SNR stabilities and waveform adaptabilities. 展开更多
关键词 Akaike information criterion(AIC) modified energy ratio(MER) discrete wavelet transform(DWT) acoustic signals with noise
在线阅读 下载PDF
Exploring heating performance of gas engine heat pump with heat recovery 被引量:3
6
作者 董付江 刘凤国 +2 位作者 李先庭 尤学一 赵冬芳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1931-1936,共6页
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1... In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature. 展开更多
关键词 gas engine heat pump coefficient of performance primary energy ratio heating mode heat recovery
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部