期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
鹈鹕算法参数优化VMD联合SVDS的电机轴承故障诊断
1
作者 孙姿姣 周湘贞 李松洋 《机械设计》 北大核心 2025年第4期150-155,共6页
为减小噪声的干扰,增强轴承故障特征频率,实现轴承故障有效诊断,文中提出了鹈鹕算法(POA)优化变分模态分解(VMD)参数联合奇异值差分谱(SVDS)的轴承故障诊断新方法。针对VMD分解时模态层数k和平衡因子α难确定的问题,以本征模态分量(IMF... 为减小噪声的干扰,增强轴承故障特征频率,实现轴承故障有效诊断,文中提出了鹈鹕算法(POA)优化变分模态分解(VMD)参数联合奇异值差分谱(SVDS)的轴承故障诊断新方法。针对VMD分解时模态层数k和平衡因子α难确定的问题,以本征模态分量(IMF)包络熵最小为评价指标,通过POA进行参数优化;利用包络熵最小指标选取最优IMF模态,并对最优模态构建Hankel矩阵进行SVDS分析;通过SVDS确定信号重构阶数完成信号重构,并以Hilbert解调对重构信号进行包络分析。通过轴承仿真信号和实测信号对方法的有效性进行了验证,结果表明:所提方法增强了轴承故障特征频率,更容易实现故障的判别。 展开更多
关键词 变分模态分解 鹈鹕算法 奇异值差分谱 轴承 故障诊断
在线阅读 下载PDF
基于CM-SVDS-SVMD的滚动轴承故障特征提取方法 被引量:2
2
作者 吕思潭 李德仓 +2 位作者 王少杰 胡兆宇 王绍隆 《制造技术与机床》 北大核心 2024年第10期13-20,共8页
针对滚动轴承微弱故障特征信息易受噪声干扰提取困难的问题,提出一种新的滚动轴承故障特征提取方法,即协方差矩阵(covariance matrix,CM)、奇异值差分谱(singular value difference spectrum,SVDS)和奇异值中值分解(singular value medi... 针对滚动轴承微弱故障特征信息易受噪声干扰提取困难的问题,提出一种新的滚动轴承故障特征提取方法,即协方差矩阵(covariance matrix,CM)、奇异值差分谱(singular value difference spectrum,SVDS)和奇异值中值分解(singular value median decomposition,SVMD)相结合。首先,考虑到旋转机械的故障特征,对轴承故障信号采用1步长方法构造Hankel矩阵;其次,考虑到信号的协方差矩阵对于信号自相关去噪的优势,进而计算Hankel的协方差矩阵并进行空间重构;再次,采用奇异值差分谱方法对重构后的协方差矩阵信号进行分解处理而实现初步降噪,通过奇异值中值分解方法对其进行分解和筛选处理而完成二次降噪,并根据处理后信号的频谱包络,实现轴承故障特征信息的提取;最后,通过滚动轴承仿真数据分析得出,所提方法能够有效提取出噪声信号的故障特征及其谐波,实现不同轴承故障类型特征的有效提取,为滚动轴承故障复杂信号处理和诊断提供了一种新的方法和途径。 展开更多
关键词 滚动轴承 协方差信号 奇异值差分谱 奇异值中值分解 特征提取
在线阅读 下载PDF
基于双树复小波和奇异差分谱的齿轮故障诊断研究 被引量:13
3
作者 胥永刚 孟志鹏 +1 位作者 陆明 付胜 《振动与冲击》 EI CSCD 北大核心 2014年第1期11-16,23,共7页
针对齿轮故障振动信号的非平稳特性和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频... 针对齿轮故障振动信号的非平稳特性和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频谱中难以准确地得到故障频率。然后对包含故障特征的分量构建Hankel矩阵并进行奇异值分解,求奇异值差分谱曲线,确定奇异值个数进行SVD重构降噪,由此实现对故障特征信息的提取。最后再求希尔伯特包络谱,便能准确地得到故障频率。实验结果和工程应用表明,该方法可以有效地提取齿轮的故障特征信息,验证了方法的可行性和有效性。 展开更多
关键词 双树复小波 HANKEL矩阵 奇异值 奇异差分谱 故障诊断 dual-tree complex wavelet transform (DT-CWT ) singular value decomposition (SVD)
在线阅读 下载PDF
基于中值滤波-SVD和EMD的声发射信号特征提取 被引量:51
4
作者 徐锋 刘云飞 宋军 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第12期2712-2719,共8页
针对随机噪声和脉冲干扰对经验模态分解(EMD)质量的影响,提出中值滤波和奇异值分解(SVD)联合降噪方法,并将其与EMD分解相结合形成一种新的声发射(AE)信号特征提取方法。首先对原始AE信号进行中值滤波,去除幅值较大的异常值;其次对去除... 针对随机噪声和脉冲干扰对经验模态分解(EMD)质量的影响,提出中值滤波和奇异值分解(SVD)联合降噪方法,并将其与EMD分解相结合形成一种新的声发射(AE)信号特征提取方法。首先对原始AE信号进行中值滤波,去除幅值较大的异常值;其次对去除异常值的信号序列进行相空间重构和SVD分解,并针对难以确定重构阶数这一问题,提出奇异值能量差分谱概念,利用谱峰的较大值位置来确定重构阶数,以进一步降噪;最后对降噪信号进行EMD分解,以本征模态函数(IMF)的能量占比作为表征各损伤信号的特征向量。数值仿真和5层胶合板损伤的实测数据表明,该方法不仅能够滤除噪声干扰,提高EMD分解的时效性和准确性,而且能够有效地提取出胶合板AE信号特征,对其损伤类型进行有效地识别。 展开更多
关键词 经验模态分解 中值滤波-奇异值分解 奇异值能量差分谱 本征模态函数 特征提取
在线阅读 下载PDF
基于EEMD-TEO熵的高速列车轴承故障诊断方法 被引量:18
5
作者 靳行 林建辉 +2 位作者 伍川辉 邓韬 黄晨光 《西南交通大学学报》 EI CSCD 北大核心 2018年第2期359-366,共8页
为了解决高速列车轴承早期故障中低频信号的类间分离性较弱、保持架故障难以识别等的问题,提出了基于Teager能量算子(Teager energy operator,TEO)聚合经验模态分解(ensemble empirical mode decomposition,EEMD)熵的自适应诊断方法.该... 为了解决高速列车轴承早期故障中低频信号的类间分离性较弱、保持架故障难以识别等的问题,提出了基于Teager能量算子(Teager energy operator,TEO)聚合经验模态分解(ensemble empirical mode decomposition,EEMD)熵的自适应诊断方法.该方法将EEMD、样本熵、TEO相结合,利用EEMD的自适应性得到固有模态(intrinic mode function,IMF)信号,用改进的TEO从IMF中提取得到样本熵,使用支持向量机(support vector machine,SVM)判断轴承工作状态与故障类型;讨论了EEMD能量熵、EEMD奇异值熵、EEMD-TEO时频熵生成的故障特征向量以及该向量在SVM中识别结果;对正常轴承、保持架故障、滚动体故障3种状态的轴承样本数据进行了故障诊断.研究结果表明:对3种轴承的故障识别率可以达到98%,较传统的经验模态熵识别率提高了2.6%,该方法可用作高速列车轴承状态诊断. 展开更多
关键词 经验模态分解 奇异值分解 TEAGER能量算子 瞬时频率 轴承故障
在线阅读 下载PDF
基于EMD分解和奇异值差分谱理论的轴承故障诊断方法 被引量:80
6
作者 张超 陈建军 徐亚兰 《振动工程学报》 EI CSCD 北大核心 2011年第5期539-545,共7页
针对故障轴承振动信号中含有强烈的背景噪声,难以提取故障频率的现实情况,提出了基于经验模态分解(Empirical Mode Decomposition,EMD)和奇异值差分谱的轴承故障诊断方法。首先通过EMD方法将非平稳的原始轴承振动信号分解成若干个平稳... 针对故障轴承振动信号中含有强烈的背景噪声,难以提取故障频率的现实情况,提出了基于经验模态分解(Empirical Mode Decomposition,EMD)和奇异值差分谱的轴承故障诊断方法。首先通过EMD方法将非平稳的原始轴承振动信号分解成若干个平稳的本征模函数(Intrinsic Mode Function,IMF);由于背景噪声的影响,从各个IMF的频谱中难以准确地得到故障频率。对IMF分量构建Hankel矩阵并进行奇异值分解,进一步找到奇异值差分谱,根据奇异值差分谱理论对某个IMF分量进行消噪和重构,然后再求其频谱,便能准确地得到故障频率。实验结果表明,提出的方法能有效地应用于轴承的故障诊断。 展开更多
关键词 轴承 故障诊断 经验模态分解 HANKEL矩阵 奇异值差分谱
在线阅读 下载PDF
改进奇异谱分解及其在轴承故障诊断中的应用 被引量:17
7
作者 胥永刚 张志新 +1 位作者 马朝永 张建宇 《振动工程学报》 EI CSCD 北大核心 2019年第3期540-547,共8页
针对强背景噪声下难以提取滚动轴承故障特征的问题,提出了基于奇异值差分谱的改进奇异谱分解方法.首先,为克服奇异值分解按经验选择嵌入维数的不足,运用一种新的信号自适应处理方法--奇异谱分解(Singu-lar Spectrum Decomposition,SSD)... 针对强背景噪声下难以提取滚动轴承故障特征的问题,提出了基于奇异值差分谱的改进奇异谱分解方法.首先,为克服奇异值分解按经验选择嵌入维数的不足,运用一种新的信号自适应处理方法--奇异谱分解(Singu-lar Spectrum Decomposition,SSD)分析振动信号,SSD法通过构建新的轨迹矩阵,自适应选取嵌入维数,将非线性、非平稳信号从高频至低频分解为多个奇异谱分量.然后,针对奇异谱分解方法重构的奇异谱分量仍包含较强噪声的问题,提出利用奇异值差分谱对重构过程进行改进,提高了奇异谱分解的降噪能力,有效提取了有用信息.最后,根据故障特征找到包含有用信息的分量,对该分量进行希尔波特包络解调,从而准确地提取出故障特征.仿真和实验结果验证了该方法的有效性,提供了一种新的故障诊断方法. 展开更多
关键词 故障诊断 滚动轴承 改进奇异谱分解 奇异值差分谱
在线阅读 下载PDF
基于奇异差分谱和平稳子空间分析的滚动轴承故障诊断 被引量:17
8
作者 唐贵基 庞彬 刘尚坤 《振动与冲击》 EI CSCD 北大核心 2015年第11期83-87,115,共6页
探究了一种基于奇异差分谱的信号升维途径,并将其和平稳子空间分析结合提出基于奇异差分谱和平稳子空间分析(Stationary Subspace Analysis,SSA)的滚动轴承故障诊断方法。该方法首先对滚动轴承原始故障振动信号进行奇异差分谱分析,根据... 探究了一种基于奇异差分谱的信号升维途径,并将其和平稳子空间分析结合提出基于奇异差分谱和平稳子空间分析(Stationary Subspace Analysis,SSA)的滚动轴承故障诊断方法。该方法首先对滚动轴承原始故障振动信号进行奇异差分谱分析,根据奇异差分谱的峰值分布,确定不同的有用分量个数进行信号重构实现信号升维,然后利用平稳子空间分析将高维信号分解为平稳源信号和非平稳源信号,最后通过对峭度值最大的非平稳源信号进行包络谱分析得到滚动轴承故障特征频率。仿真信号和滚动轴承早期故障信号分析表明该方法可以实现滚动轴承欠定故障信号的盲分离,验证了该方法的有效性。 展开更多
关键词 奇异差分谱 平稳子空间分析 滚动轴承 故障诊断
在线阅读 下载PDF
基于DT-CWT和奇异能量差分谱的滚动轴承故障诊断研究 被引量:7
9
作者 任学平 王朝阁 +1 位作者 张玉皓 庞震 《机械设计与制造》 北大核心 2016年第4期39-43,共5页
滚动轴承故障信号具有非平稳、能量低等特征,为了能够准确、有效地检测出轴承故障,提出了将双树复小波和奇异值能量差分谱相结合的诊断方法。首先运用双树复小波对采集到的振动信号进行分解,再重构单支信号,由于噪声的干扰,从重构后分... 滚动轴承故障信号具有非平稳、能量低等特征,为了能够准确、有效地检测出轴承故障,提出了将双树复小波和奇异值能量差分谱相结合的诊断方法。首先运用双树复小波对采集到的振动信号进行分解,再重构单支信号,由于噪声的干扰,从重构后分量的频谱中很难对故障做出正确的判断。然后对包含故障特征的分量求取奇异值能量差分谱,确定有效阶次进行信号重构降噪。最后对降噪信号求Hibert包络谱,便能准确获得故障特征频率。通过信号仿真和实验数据分析验证了该方法的有效性。 展开更多
关键词 轴承故障 奇异值 双树复小波 奇异差分能量谱 Hibert包络谱
在线阅读 下载PDF
基于中值滤波-奇异值分解的胶合板拉伸声发射信号降噪方法研究 被引量:19
10
作者 徐锋 刘云飞 《振动与冲击》 EI CSCD 北大核心 2011年第12期135-140,共6页
为了去除声发射信号中的随机噪声与脉冲干扰,提高有用信号质量,提出一种中值滤波与奇异值分解相结合的降噪方法。该方法首先对原始声发射信号进行中值滤波,去除幅值较大的异常值,其次对去除异常值的信号序列进行相空间重构和奇异值分解... 为了去除声发射信号中的随机噪声与脉冲干扰,提高有用信号质量,提出一种中值滤波与奇异值分解相结合的降噪方法。该方法首先对原始声发射信号进行中值滤波,去除幅值较大的异常值,其次对去除异常值的信号序列进行相空间重构和奇异值分解,最后针对确定重构阶数这一难点,提出奇异值能量差分谱概念,并利用能量差分谱的较大峰值位置来确定奇异值的重构阶数,以实现降噪。数值仿真和五层胶合板强度测试的实测数据分析表明,该方法能够有效地保留原有信号的特征,并能最大限度地消除噪声,提高信噪比。 展开更多
关键词 降噪 声发射信号 中值滤波-奇异值分解 奇异值能量差分谱
在线阅读 下载PDF
一种基于LCD-Hilbert变换和奇异谱熵的配电网暂时过电压类型识别方法 被引量:34
11
作者 金涛 许立彬 +2 位作者 高伟 郭谋发 陈永往 《电机与控制学报》 EI CSCD 北大核心 2018年第11期26-36,共11页
针对当前电力系统配网领域的过电压识别问题,提出一种基于时频分布特征的配电网暂时过电压分类识别方法。在暂时过电压中,单相金属性接地过电压的三相电压能量分布均匀度最低,间歇性弧光接地零序电压的直流分量最高,铁磁谐振零序电压信... 针对当前电力系统配网领域的过电压识别问题,提出一种基于时频分布特征的配电网暂时过电压分类识别方法。在暂时过电压中,单相金属性接地过电压的三相电压能量分布均匀度最低,间歇性弧光接地零序电压的直流分量最高,铁磁谐振零序电压信号在幅值和频率集中频带上存在很大差异。计算零序电压能量贡献率、零序电压平均值和三相电压奇异谱熵,提取过电压信号的时域能量分布特征;采用局部特征尺度分解(LCD)和Hilbert变换结合带通滤波算法计算零序电压重心频带,提取过电压信号的频域能量分布特征;结合阈值判别法实现暂时过电压类型识别。该方法不需要分类器,算法简单,计算时间少。仿真和实验表明该识别方法在不同故障条件下均有更高的识别率。 展开更多
关键词 中性点不接地系统 暂时过电压 能量贡献率 平均值 奇异谱熵 重心频带
在线阅读 下载PDF
IVMD融合奇异值差分谱的滚动轴承早期故障诊断 被引量:31
12
作者 唐贵基 王晓龙 《振动.测试与诊断》 EI CSCD 北大核心 2016年第4期700-707,810,共8页
针对滚动轴承早期故障阶段存在特征信号微弱、故障识别相对困难的问题,提出了融合改进变分模态分解和奇异值差分谱的诊断方法。原始信号经改进变分模态分解方法处理后,被分解为若干本征模态函数分量,利用包络谱稀疏度指标筛选出最佳分... 针对滚动轴承早期故障阶段存在特征信号微弱、故障识别相对困难的问题,提出了融合改进变分模态分解和奇异值差分谱的诊断方法。原始信号经改进变分模态分解方法处理后,被分解为若干本征模态函数分量,利用包络谱稀疏度指标筛选出最佳分量构造Hankel矩阵并进行奇异值分解,求取奇异值差分谱后,根据差分谱中的突变点重构信号,最终通过分析信号的包络谱可判断轴承的故障类型。利用改进变分模态分解融合奇异值差分谱的方法对轴承故障模拟及实测信号进行分析,均成功提取出微弱特征信息,能够实现滚动轴承早期故障的有效判别,具有一定的可靠性和应用价值。 展开更多
关键词 改进变分模态分解 奇异值差分谱 滚动轴承 早期故障
在线阅读 下载PDF
基于LMD与奇异值差分谱的滚动轴承故障诊断方法 被引量:8
13
作者 马朝永 刘茜 段建民 《北京工业大学学报》 CAS CSCD 北大核心 2014年第2期182-188,共7页
针对滚动轴承故障振动信号的非线性非平稳特性及强噪声特性,提出了一种基于局部均值分解(local mean decomposition,LMD)和奇异值差分谱的滚动轴承故障诊断方法.首先对原始信号进行LMD分解,得到若干乘积函数(product function,PF)分量,... 针对滚动轴承故障振动信号的非线性非平稳特性及强噪声特性,提出了一种基于局部均值分解(local mean decomposition,LMD)和奇异值差分谱的滚动轴承故障诊断方法.首先对原始信号进行LMD分解,得到若干乘积函数(product function,PF)分量,然后对故障特征明显的分量构建Hankel矩阵并进行奇异值分解,求出奇异值差分谱曲线,找到奇异值差分谱最大突变点来确定奇异值重构分量的个数,进而对包含故障特征频段的分量进行消噪和重构,再对重构信号进行Hilbert包络谱分析,提取故障特征.实验结果和工程应用表明:LMD和奇异值差分谱结合的信号特征提取方法,能准确、有效地提取滚动轴承的故障特征频率,对故障类型作出准确判断. 展开更多
关键词 局部均值分解 奇异值差分谱 故障诊断
在线阅读 下载PDF
互补集合经验模式分解与奇异值能量谱在风电齿轮故障识别中的应用 被引量:6
14
作者 张文斌 江洁 +3 位作者 俞利宾 郭德伟 闵洁 普亚松 《太阳能学报》 EI CAS CSCD 北大核心 2020年第2期137-143,共7页
针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分... 针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分解并求出风电齿轮不同工况下的奇异值能量谱分布,以奇异值能量谱为元素构造特征向量,通过计算不同工况振动信号的灰色关联度来判断齿轮的故障类型。实例表明,该方法能有效应用于风电机组齿轮系统的故障诊断。 展开更多
关键词 故障分析 齿轮 信号处理 互补集合经验模式分解 奇异值能量谱
在线阅读 下载PDF
基于傅里叶分解与奇异值差分谱的滚动轴承故障诊断方法 被引量:17
15
作者 付秀伟 高兴泉 《计量学报》 CSCD 北大核心 2018年第5期688-692,共5页
针对强噪声条件下滚动轴承故障冲击特征难以提取的特点,提出了一种基于傅里叶分解与奇异值差分谱的滚动轴承故障诊断方法。首先通过傅里叶分解将非平稳的原始轴承故障振动信号分解为若干个固有频带函数,然后运用互相关系数法筛选固有频... 针对强噪声条件下滚动轴承故障冲击特征难以提取的特点,提出了一种基于傅里叶分解与奇异值差分谱的滚动轴承故障诊断方法。首先通过傅里叶分解将非平稳的原始轴承故障振动信号分解为若干个固有频带函数,然后运用互相关系数法筛选固有频带函数进行信号重构,并对重构后的信号进行奇异值差分谱降噪,最后对联合降噪后的信号进行Hilbert包络谱分析,准确地识别出故障特征频率,进行故障诊断。仿真分析和试验都很好地验证了该方法的有效性。 展开更多
关键词 计量学 滚动轴承 故障诊断 傅里叶分解 奇异值差分谱
在线阅读 下载PDF
基于奇异值分解(SVD)差分谱降噪和本征模函数(IMF)能量谱的改进Hilbert-Huang方法 被引量:18
16
作者 柴凯 张梅军 +1 位作者 黄杰 唐俊刚 《科学技术与工程》 北大核心 2015年第9期90-96,共7页
针对随机噪声和虚假IMF会导致改进HHT中EEMD分解质量下降和Hilbert谱混乱,提出了一种基于SVD差分谱降噪预处理和IMF能量谱剔除虚假分量的改进HHT。该方法首先对原始信号进行SVD降噪,通过基本不等式原理来确定相空间重组的最佳Hankel矩... 针对随机噪声和虚假IMF会导致改进HHT中EEMD分解质量下降和Hilbert谱混乱,提出了一种基于SVD差分谱降噪预处理和IMF能量谱剔除虚假分量的改进HHT。该方法首先对原始信号进行SVD降噪,通过基本不等式原理来确定相空间重组的最佳Hankel矩阵结构,利用奇异值差分谱来确定有效奇异值的阶次;然后对消噪的信号进行EEMD分解,通过IMF能量谱来去除虚假分量;最后对主IMF进行Hilbert谱分析。仿真和实验结果表明,SVD能提高信噪比,抑制噪声对EEMD分解精度的干扰;能量谱能有效地消除虚假IMF对Hilbert谱分析的影响;Hilbert谱中各频率成分清晰,解决了随机噪声和虚假分量对传统改进HHT的不良影响。 展开更多
关键词 改进Hilbert-Huang变换 奇异值分解 差分谱 总体平均经验模态分解 固有模态函数 能量谱
在线阅读 下载PDF
基于SVD-AR模型与VPMCD的轴承故障诊断方法 被引量:5
17
作者 刘英杰 范玉刚 +1 位作者 黄国勇 毛敏 《传感器与微系统》 CSCD 2017年第12期46-49,共4页
针对强噪声背景下振动信号故障特征难以提取的问题,提出了基于奇异值分解的自回归(SVD-AR)模型,用于提取振动信号的特征,并与变量预测模型模式识别(VPMCD)方法相结合应用于轴承故障诊断。对轴承振动信号进行SVD;然后,利用奇异值差分谱... 针对强噪声背景下振动信号故障特征难以提取的问题,提出了基于奇异值分解的自回归(SVD-AR)模型,用于提取振动信号的特征,并与变量预测模型模式识别(VPMCD)方法相结合应用于轴承故障诊断。对轴承振动信号进行SVD;然后,利用奇异值差分谱对分量信号进行筛选,对能够反映故障信息的分量信号建立AR模型,提取轴承振动信号的特征信息;采用VPMCD对滚动轴承运行状态进行识别。实验证明了方法的合理性和有效性。 展开更多
关键词 奇异值分解 自回归模型 变量预测模型 奇异值差分谱 故障诊断
在线阅读 下载PDF
自适应奇异值分解的随机共振提取微弱故障特征 被引量:14
18
作者 李志星 石博强 《农业工程学报》 EI CAS CSCD 北大核心 2017年第11期60-67,共8页
针对农业机械设备在强背景噪声下微弱故障特征难以提取的问题,提出一种基于自适应奇异值分解的随机共振微弱故障特征提取方法。首先,将原始信号奇异值分解并重构得到分量信号,构建互信息差分谱,权衡各分量信号对原始信号的贡献率,自适... 针对农业机械设备在强背景噪声下微弱故障特征难以提取的问题,提出一种基于自适应奇异值分解的随机共振微弱故障特征提取方法。首先,将原始信号奇异值分解并重构得到分量信号,构建互信息差分谱,权衡各分量信号对原始信号的贡献率,自适应选取有效奇异值个数,以克服已有方法人为主观选择或仅考虑奇异值大小等不足;其次,对选取的有效奇异值对应的分量信号自适应随机共振,使其微弱故障特征增强;最后,对增强的分量信号统计学平均以提取微弱故障特征。仿真和轴承外圈故障试验结果表明,该方法不仅克服了强背景噪声下有效奇异值的选取困难,而且结合自适应随机共振,有效提取出仿真信号100 Hz和轴承外圈155.5 Hz的故障特征频率,因此,所提方法不仅能够更好的增强微弱故障特征,而且分析结果优于单纯的奇异值分解和随机共振方法。该文提出的方法不仅可适用于强噪声背景下轴承的故障诊断,同时为农业机械设备的轴承故障诊断提供参考。 展开更多
关键词 振动 农业机械 故障检测 奇异值分解 互信息差分谱 微弱特征
在线阅读 下载PDF
基于奇异值差分谱与改进包络分析的轴承故障特征提取 被引量:8
19
作者 杨望灿 张培林 +1 位作者 王怀光 陈彦龙 《轴承》 北大核心 2013年第5期49-53,共5页
针对滚动轴承振动信号故障特征难以提取的问题,提出了一种基于奇异值差分谱与改进包络分析的轴承故障特征提取方法。首先,通过奇异值分解将原始轴承振动信号分解为一系列能够线性叠加的分量信号,利用故障特征分量和噪声分量在奇异值上... 针对滚动轴承振动信号故障特征难以提取的问题,提出了一种基于奇异值差分谱与改进包络分析的轴承故障特征提取方法。首先,通过奇异值分解将原始轴承振动信号分解为一系列能够线性叠加的分量信号,利用故障特征分量和噪声分量在奇异值上的差异,根据奇异值差分谱的性质筛选出有效奇异值,选择包含故障特征的分量重构信号。针对奇异值分解去噪后仍存在残余噪声,采用改进包络分析,在频域中进一步去除重构信号中的残余噪声。最后对实测轴承信号进行分析,准确地提取到故障特征明显、故障频率突出的轴承故障信号,完成故障诊断。 展开更多
关键词 滚动轴承 奇异值差分谱 改进包络分析 特征提取
在线阅读 下载PDF
基于SVD-VMD和SVM滚动轴承故障诊断方法 被引量:18
20
作者 陈剑 阚东 +1 位作者 孙太华 张磊 《电子测量与仪器学报》 CSCD 北大核心 2022年第1期220-226,共7页
针对故障滚动轴承振动信号中含有干扰信号,难以准确提取出故障信息,提出了一种基于奇异值分解(SVD)、变分模态分解(VMD)、和支持向量机(SVM)的滚动轴承故障诊断方法。首先利用奇异值分解对信号进行处理,根据奇异值峰度差分谱来确定分解... 针对故障滚动轴承振动信号中含有干扰信号,难以准确提取出故障信息,提出了一种基于奇异值分解(SVD)、变分模态分解(VMD)、和支持向量机(SVM)的滚动轴承故障诊断方法。首先利用奇异值分解对信号进行处理,根据奇异值峰度差分谱来确定分解后重构矩阵的有效阶数,然后根据该有效阶数重构信号,对重构后的信号进行VMD分解,根据上述有效阶数确定分解的本征模态函数(IMF)分量的个数,从分解后的IMF分量中提取故障特征参数,将其作为支持向量机的输入参数进行故障诊断。最后采用合肥工业大学轴承试验机进行验证,并与直接进VMD分解及基于带通滤波器信号去噪的故障诊断方法进行对比,结果表明该方法能有效识别滚动轴承的故障类型,可用于滚动轴承故障诊断。 展开更多
关键词 故障诊断 奇异值峰度差分谱 变分模态分解 故障特征提取 信号降噪
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部