The essence of energy system transition is the"energy revolution':The development of the"resource-dominated"energy system with fossil energy as the mainstay has promoted human progress,but it has al...The essence of energy system transition is the"energy revolution':The development of the"resource-dominated"energy system with fossil energy as the mainstay has promoted human progress,but it has also triggered energy crisis and ecological environment crisis,which is not compatible with the new demands of the new round of scientific and technological revolution,industrial transformation,and sustainable human development.It is in urgent need to research and develop a new-type energy system in the context of carbon neutrality.In the framework of"technique-dominated"new green and intelligent energy system with"three new"of new energy,new power and new energy storage as the mainstay,the"super energy basin"concepts with the Ordos Basin,Nw China as a representative will reshape the concept and model of future energy exploration and development.In view of the"six inequalities"in global energy and the resource conditions of"abundant coal,insufficient oil and gas and infinite new energy"in China,it is suggested to deeply boost"China energy revolution',sticking to the six principles of independent energy production,green energy supply,secure energy reserve,efficient energy consumption,intelligent energy management,economical energy cost;enhance"energy scientific and technological innovation"by implementing technique-dominated"four major science and technology innovation projects',namely,clean coal project,oil production stabilization and gas production increasing project,new energy acceleration project,and green-intelligent energy project;implement"energy transition"by accelerating the green-dominated"four-modernization development',namely,fossil energy cleaning,large-scale new energy,coordinated centralized energy distribution,intelligent multi-energy management,so as to promote the exchange of two 80%s"in China's energy structure and construct the new green and intelligent energy system.展开更多
Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is cha...Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.展开更多
High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu...High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.展开更多
The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans.As a burgeoning technological method for electrom...The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans.As a burgeoning technological method for electromechanical conversion,triboelectric nanogenerator(TENG)has significant advantages in marine energy for its low weight,cost-effectiveness,and high efficiency in low-frequency range.It can realize the efficient and economical harvesting of low-frequency blue energy by constructing the floating marine energy harvesting TENG.This paper firstly introduces the power transfer process and structural composition of TENG for marine energy harvesting in detail.In addition,the latest research works of TENG on marine energy harvesting in basic research and structural design are systematically reviewed by category.Finally,the advanced research progress in the power take-off types and engineering study of TENG with the marine energy are comprehensively generalized.Importantly,the challenges and problems faced by TENG in marine energy and in situ electrochemical application are summarized and the corresponding prospects and suggestions are proposed for the subsequent development direction and prospects to look forward to promoting the commercialization process of this field.展开更多
Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and the...Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and thermal comfort.However,the low optical modulation and poor durability of these devices severely limit its practical applications.Herein,we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life,but also displays a high capacitance and a high energy recycling efficiency of 51.4%,integrating energy-saving with energy-storage.The nanowires structure and abundant oxygen-vacancies of oxygen-deficient tungsten oxide nanowires endows it high flexibility and a high optical modulation of 73.1%and 85.3%at 633 and 1200 nm respectively.The prototype device assembled can modulate the VIS light and NIR independently and effectively through three distinct modes with a long cycle life(3.3%capacity loss after 10,000 cycles)and a high energy-saving performance(8.8℃lower than the common glass).Furthermore,simulations also demonstrate that our device outperforms the commercial low-emissivity glass in terms of energy-saving in most climatic zones around the world.Such windows represent an intriguing potential technology to improve the building energy efficiency.展开更多
Microbatteries(MBs)are crucial to power miniaturized devices for the Internet of Things.In the evolutionary journey of MBs,fabrication technology emerges as the cornerstone,guiding the intricacies of their configurati...Microbatteries(MBs)are crucial to power miniaturized devices for the Internet of Things.In the evolutionary journey of MBs,fabrication technology emerges as the cornerstone,guiding the intricacies of their configuration designs,ensuring precision,and facilitating scalability for mass production.Photolithography stands out as an ideal technology,leveraging its unparalleled resolution,exceptional design flexibility,and entrenched position within the mature semiconductor industry.However,comprehensive reviews on its application in MB development remain scarce.This review aims to bridge that gap by thoroughly assessing the recent status and promising prospects of photolithographic microfabrication for MBs.Firstly,we delve into the fundamental principles and step-by-step procedures of photolithography,offering a nuanced understanding of its operational mechanisms and the criteria for photoresist selection.Subsequently,we highlighted the specific roles of photolithography in the fabrication of MBs,including its utilization as a template for creating miniaturized micropatterns,a protective layer during the etching process,a mold for soft lithography,a constituent of MB active component,and a sacrificial layer in the construction of micro-Swiss-roll structure.Finally,the review concludes with a summary of the key challenges and future perspectives of MBs fabricated by photolithography,providing comprehensive insights and sparking research inspiration in this field.展开更多
Harvesting the immense and renewable osmotic energy with reverse electrodialysis(RED)technology shows great promise in dealing with the ever-growing energy crisis.One key challenge is to improve the output power densi...Harvesting the immense and renewable osmotic energy with reverse electrodialysis(RED)technology shows great promise in dealing with the ever-growing energy crisis.One key challenge is to improve the output power density with improved trade-off between membrane permeability and selectivity.Herein,polyelectrolyte hydrogels(channel width,2.2 nm)with inherent high ion conductivity have been demonstrated to enable excellent selective ion transfer when confined in cylindrical anodized aluminum pore with lateral size even up to the submillimeter scale(radius,0.1 mm).The membrane permeability of the anti-swelling hydrogel can also be further increased with cellulose nanofibers.With real seawater and river water,the output power density of a three-chamber cell on behalf of repeat unit of RED system can reach up to 8.99 W m^(-2)(per unit total membrane area),much better than state-of-the-art membranes.This work provides a new strategy for the preparation of polyelectrolyte hydrogel-based ion-selective membranes,owning broad application prospects in the fields of osmotic energy collection,electrodialysis,flow battery and so on.展开更多
Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials ...Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials have received widespread attention because of their high theoretical energy densities,low cost,and sustainability.Despite the great progress in research and development of SSLBs based on conversiontype cathodes,their practical applications still face challenges such as blocked ionic-electronic migration pathways,huge volume change,interfacial incompatibility,and expensive processing costs.This review focuses on the advantages and critical issues of coupling conversion-type cathodes with solid-state electrolytes(SSEs),as well as state-of-the-art progress in various promising cathodes(e.g.,FeS_(2),CuS,FeF_(3),FeF_(2),and S)in SSLBs.Furthermore,representative research on conversion-type solid-state full cells is discussed to offer enlightenment for their practical application.Significantly,the energy density exhibited by the S cathode stands out impressively,while sulfide SSEs and halide SSEs have demonstrated immense potential for coupling with conversion-type cathodes.Finally,perspectives on conversion-type cathodes are provided at the material,interface,composite electrode,and battery levels,with a view to accelerating the development of conversion-type cathodes for high-energy–density SSLBs.展开更多
This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar ...This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar power and flexible loads on the EH,an interactive power model was developed to represent the EH’s operation under these influences.Additionally,an ADN security distance model,integrating an EH with flexible loads,was constructed to evaluate the effect of flexible load variations on the ADN’s security distance.By considering scenarios such as air conditioning(AC)load reduction and base station(BS)load transfer,the security distances of phases A,B,and C increased by 17.1%,17.2%,and 17.7%,respectively.Furthermore,a multi-objective optimal power flow model was formulated and solved using the Forward-Backward Power Flow Algorithm,the NSGA-II multi-objective optimization algo-rithm,and the maximum satisfaction method.The simulation results of the IEEE33 node system example demonstrate that after opti-mization,the total energy cost for one day is reduced by 0.026%,and the total security distance limit of the ADN’s three phases is improved by 0.1 MVA.This method effectively enhances the security distance,facilitates BS load transfer and AC load reduction,and contributes to the energy-saving,economical,and safe operation of the power system.展开更多
In an era where technological advancement and sustainability converge,developing renewable materials with multifunctional integration is increasingly in demand.This study filled a crucial gap by integrating energy sto...In an era where technological advancement and sustainability converge,developing renewable materials with multifunctional integration is increasingly in demand.This study filled a crucial gap by integrating energy storage,multi-band electromagnetic interference(EMI)shielding,and structural design into bio-based materials.Specifically,conductive polymer layers were formed within the 2,2,6,6-tetramethylpiperidine-1-oxide(TEMPO)-oxidized cellulose fiber skeleton,where a mild TEMPO-mediated oxidation system was applied to endow it with abundant macropores that could be utilized as active sites(specific surface area of 105.6 m2 g-1).Benefiting from the special hierarchical porous structure of the material,the constructed cellulose fiber-derived composites can realize high areal-specific capacitance of 12.44 F cm^(-2)at 5 m A cm^(-2)and areal energy density of 3.99 m Wh cm^(-2)(2005 m W cm^(-2))with an excellent stability of maintaining 90.23%after 10,000 cycles at 50 m A cm^(-2).Meanwhile,the composites showed a high electrical conductivity of 877.19 S m-1 and excellent EMI efficiency(>99.99%)in multiple wavelength bands.The composite material’s EMI values exceed 100 d B across the L,S,C,and X bands,effectively shielding electromagnetic waves in daily life.The proposed strategy paves the way for utilizing bio-based materials in applications like energy storage and EMI shielding,contributing to a more sustainable future.展开更多
EHL-2 spherical torus(ST)is one of the key steps of p-^(11)B(proton-boron or hydrogen-boron)fusion energy research in ENN.The fusion produced energy is carried mainly by alpha particles of average energy 3 MeV,which i...EHL-2 spherical torus(ST)is one of the key steps of p-^(11)B(proton-boron or hydrogen-boron)fusion energy research in ENN.The fusion produced energy is carried mainly by alpha particles of average energy 3 MeV,which ideally can be converted to electricity with high efficiency(>80%).However,there exist serious difficulties to realize such conversion in a fusion device,due to the high energy density and high voltage required.To comprehensively describe the progress of the EHL-2 physics design,this work presents preliminary considerations of approaches for achieving energy conversion,highlighting critical issues for further investigation.Specifically,we provide an initial simulation of alpha particle extraction in the EHL-2 ST configuration as a starting point for p-^(11)B fusion energy conversion.展开更多
Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbo...Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins.Under the framework of a green and intelligent energy system primarily based on“four news”,new energy,new electricity,new energy storage,and new intelligence,integrating a“super energy system”composed of a huge amount of underground resources of coal,oil,gas and heat highly overlapping with abundant wind and solar energy resources above ground,and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy,with a carbon neutrality system centered around carbon cycling is essential.This paper aims to select the traditional oil and gas basins as“super energy basins”with the conditions to build world-class energy production and demonstration bases for carbon neutrality.The Ordos Basin has unique regional advantages,including abundant fossil fuel and new energy resources,as well as matching CO_(2)sources and sinks,position it as a carbon neutrality“super energy basin”which explores the path of transformation of traditional oil and gas basins.Under the integrated development concept and mode of“coal+oil+gas+new energy+carbon capture,utilization and storage(CCUS)/carbon capture and storage(CCS)”,the carbon neutrality in super energy basin is basically achieved,which enhance energy supply and contribute to the carbon peak and carbon neutrality goals,establish a modern energy industry and promote regional green and sustainable development.The pioneering construction of the world-class carbon neutrality“super energy system”demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins,which is of great significance to the global energy revolution under carbon neutrality.展开更多
In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small...In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving.展开更多
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ...Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.展开更多
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ...Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.展开更多
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculate...Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost.展开更多
This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on th...This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on the geometric topology of the FSP system,three FSP configurations with the same areal density are derived,namely multi-layer,gradient core and asymmetric face sheet,and three key structural parameters are identified:core thickness(t_(c)),face sheet thickness(t_(f))and overlap face/core number(n_(o)).The ballistic performance of the FSP system is comprehensively evaluated in terms of the ballistic limit velocity(BLV),deformation modes,energy dissipation mechanism,and specific penetration energy(SPE).The results show that the FSP system exhibits a significant configuration dependence,whose ballistic performance ranking is:asymmetric face sheet>gradient core>multi-layer.The mass distribution of the top and bottom face sheets plays a critical role in the ballistic resistance of the FSP system.Both BLV and SPE increase with tf,while the raising tcor noleads to an increase in BLV but a decrease in SPE.Further,a face-core synchronous enhancement mechanism is discovered by the energy dissipation analysis,based on which the ballistic optimization procedure is also conducted and a design chart is established.This study shed light on the anti-penetration mechanism of the FSP system and might provide a theoretical basis for its engineering application.展开更多
The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities ...The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities for transitioning to sustainable renewable energy sources such as solar,wind,and hydrogen.This transition economically challenges traditional energy sectors while fostering new industries,promoting job growth,and sustainable economic development.The transition to renewable energy demands social equity,ensuring universal access to affordable energy,and considering community impact.The environmental benefits include a significant reduction in greenhouse gas emissions and a lesser ecological footprint.This study highlights the rapid growth of the global wind power market,which is projected to increase from$112.23 billion in 2022 to$278.43 billion by 2030,with a compound annual growth rate of 13.67%.In addition,the demand for hydrogen is expected to increase,significantly impacting the market with potential cost reductions and making it a critical renewable energy source owing to its affordability and zero emissions.By 2028,renewables are predicted to account for 42%of global electricity generation,with significant contributions from wind and solar photovoltaic(PV)technology,particularly in China,the European Union,the United States,and India.These developments signify a global commitment to diversifying energy sources,reducing emissions,and moving toward cleaner and more sustainable energy solutions.This review offers stakeholders the insights required to smoothly transition to sustainable energy,setting the stage for a resilient future.展开更多
Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high v...Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high vibration attenuation and robustness across a wide frequency spectrum. Energy harvester is a device employed to convert kinetic energy into usable electric energy. In this paper, we propose an electromagnetic energy harvester enhanced viscoelastic nonlinear energy sink(VNES) to achieve passive vibration suppression and energy harvesting simultaneously. A critical departure from prior studies is the investigation of the stochastic P-bifurcation of the electromechanically coupled VNES system under narrowband random excitation. Initially, approximate analytical solutions are derived using a combination of a multiple-scale method and a perturbation approach. The substantial agreement between theoretical analysis solutions and numerical solutions obtained from Monte Carlo simulation underscores the method's high degree of validity. Furthermore, the effects of system parameters on system responses are carefully examined. Additionally, we demonstrate that stochastic P-bifurcation can be induced by system parameters, which is further verified by the steady-state density functions of displacement. Lastly,we analyze the impacts of various parameters on the mean square current and the mean output power, which are crucial for selecting suitable parameters to enhance the energy harvesting performance.展开更多
文摘The essence of energy system transition is the"energy revolution':The development of the"resource-dominated"energy system with fossil energy as the mainstay has promoted human progress,but it has also triggered energy crisis and ecological environment crisis,which is not compatible with the new demands of the new round of scientific and technological revolution,industrial transformation,and sustainable human development.It is in urgent need to research and develop a new-type energy system in the context of carbon neutrality.In the framework of"technique-dominated"new green and intelligent energy system with"three new"of new energy,new power and new energy storage as the mainstay,the"super energy basin"concepts with the Ordos Basin,Nw China as a representative will reshape the concept and model of future energy exploration and development.In view of the"six inequalities"in global energy and the resource conditions of"abundant coal,insufficient oil and gas and infinite new energy"in China,it is suggested to deeply boost"China energy revolution',sticking to the six principles of independent energy production,green energy supply,secure energy reserve,efficient energy consumption,intelligent energy management,economical energy cost;enhance"energy scientific and technological innovation"by implementing technique-dominated"four major science and technology innovation projects',namely,clean coal project,oil production stabilization and gas production increasing project,new energy acceleration project,and green-intelligent energy project;implement"energy transition"by accelerating the green-dominated"four-modernization development',namely,fossil energy cleaning,large-scale new energy,coordinated centralized energy distribution,intelligent multi-energy management,so as to promote the exchange of two 80%s"in China's energy structure and construct the new green and intelligent energy system.
基金supported by the National Natural Science Foundation of China(No.52373280,52177014,51977009,52273257)。
文摘Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272103 and 52072010)Beijing Natural Science Foundation(Grant Nos.2242029 and JL23004).
文摘High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.
基金supported by the Talent Fund of Beijing Jiaotong University(2023XKRC034)China National Postdoctoral Program for Innovative Talents(BX20230037)+3 种基金China Postdoctoral Science Foundation(2023M730205)National key research and development program(2021YFB3203202)Beijing Municipal Natural Science Foundation(4232074)Fundamental Research Funds for the Central Universities(2020JBZD011)。
文摘The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans.As a burgeoning technological method for electromechanical conversion,triboelectric nanogenerator(TENG)has significant advantages in marine energy for its low weight,cost-effectiveness,and high efficiency in low-frequency range.It can realize the efficient and economical harvesting of low-frequency blue energy by constructing the floating marine energy harvesting TENG.This paper firstly introduces the power transfer process and structural composition of TENG for marine energy harvesting in detail.In addition,the latest research works of TENG on marine energy harvesting in basic research and structural design are systematically reviewed by category.Finally,the advanced research progress in the power take-off types and engineering study of TENG with the marine energy are comprehensively generalized.Importantly,the challenges and problems faced by TENG in marine energy and in situ electrochemical application are summarized and the corresponding prospects and suggestions are proposed for the subsequent development direction and prospects to look forward to promoting the commercialization process of this field.
基金support from the National Natural Science Foundation of China(Grant No.62105148)China Postdoctoral Science Foundation(2022TQ0148 and 2023M731651)Postgraduate Research&Practice Innovation Program of NUAA(xcxjh20230609).
文摘Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and thermal comfort.However,the low optical modulation and poor durability of these devices severely limit its practical applications.Herein,we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life,but also displays a high capacitance and a high energy recycling efficiency of 51.4%,integrating energy-saving with energy-storage.The nanowires structure and abundant oxygen-vacancies of oxygen-deficient tungsten oxide nanowires endows it high flexibility and a high optical modulation of 73.1%and 85.3%at 633 and 1200 nm respectively.The prototype device assembled can modulate the VIS light and NIR independently and effectively through three distinct modes with a long cycle life(3.3%capacity loss after 10,000 cycles)and a high energy-saving performance(8.8℃lower than the common glass).Furthermore,simulations also demonstrate that our device outperforms the commercial low-emissivity glass in terms of energy-saving in most climatic zones around the world.Such windows represent an intriguing potential technology to improve the building energy efficiency.
基金supported by the National Natural Science Foundation of China(22125903,22439003,22209175)the National Key R&D Program of China(Grant 2022YFA1504100,2023YFB4005204)+1 种基金the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(Grant E412010508)the State Key Laboratory of Catalysis(No:2024SKL-A-001)。
文摘Microbatteries(MBs)are crucial to power miniaturized devices for the Internet of Things.In the evolutionary journey of MBs,fabrication technology emerges as the cornerstone,guiding the intricacies of their configuration designs,ensuring precision,and facilitating scalability for mass production.Photolithography stands out as an ideal technology,leveraging its unparalleled resolution,exceptional design flexibility,and entrenched position within the mature semiconductor industry.However,comprehensive reviews on its application in MB development remain scarce.This review aims to bridge that gap by thoroughly assessing the recent status and promising prospects of photolithographic microfabrication for MBs.Firstly,we delve into the fundamental principles and step-by-step procedures of photolithography,offering a nuanced understanding of its operational mechanisms and the criteria for photoresist selection.Subsequently,we highlighted the specific roles of photolithography in the fabrication of MBs,including its utilization as a template for creating miniaturized micropatterns,a protective layer during the etching process,a mold for soft lithography,a constituent of MB active component,and a sacrificial layer in the construction of micro-Swiss-roll structure.Finally,the review concludes with a summary of the key challenges and future perspectives of MBs fabricated by photolithography,providing comprehensive insights and sparking research inspiration in this field.
基金supported by The Project of“20 Items of University”of Jinan(Grant No.202228078)Innovative Research Team in Higher Educational Institutions of Shandong Province(Grant No.2023KJ107)+2 种基金Taishan Scholars Program of Shandong Province(tsqn201812085)National Natural Science Foundation of China(Grant No.51903102,Grant No.52376063,Grant No.52302256)China Postdoctoral Science Foundation(Grant No.2023MD744223).
文摘Harvesting the immense and renewable osmotic energy with reverse electrodialysis(RED)technology shows great promise in dealing with the ever-growing energy crisis.One key challenge is to improve the output power density with improved trade-off between membrane permeability and selectivity.Herein,polyelectrolyte hydrogels(channel width,2.2 nm)with inherent high ion conductivity have been demonstrated to enable excellent selective ion transfer when confined in cylindrical anodized aluminum pore with lateral size even up to the submillimeter scale(radius,0.1 mm).The membrane permeability of the anti-swelling hydrogel can also be further increased with cellulose nanofibers.With real seawater and river water,the output power density of a three-chamber cell on behalf of repeat unit of RED system can reach up to 8.99 W m^(-2)(per unit total membrane area),much better than state-of-the-art membranes.This work provides a new strategy for the preparation of polyelectrolyte hydrogel-based ion-selective membranes,owning broad application prospects in the fields of osmotic energy collection,electrodialysis,flow battery and so on.
基金National Natural Science Foundation of China(22322903,52072061)Natural Science Foundation of Sichuan,China(2023NSFSC1914)Beijing National Laboratory for Condensed Matter Physics(2023BNLCMPKF015)。
文摘Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials have received widespread attention because of their high theoretical energy densities,low cost,and sustainability.Despite the great progress in research and development of SSLBs based on conversiontype cathodes,their practical applications still face challenges such as blocked ionic-electronic migration pathways,huge volume change,interfacial incompatibility,and expensive processing costs.This review focuses on the advantages and critical issues of coupling conversion-type cathodes with solid-state electrolytes(SSEs),as well as state-of-the-art progress in various promising cathodes(e.g.,FeS_(2),CuS,FeF_(3),FeF_(2),and S)in SSLBs.Furthermore,representative research on conversion-type solid-state full cells is discussed to offer enlightenment for their practical application.Significantly,the energy density exhibited by the S cathode stands out impressively,while sulfide SSEs and halide SSEs have demonstrated immense potential for coupling with conversion-type cathodes.Finally,perspectives on conversion-type cathodes are provided at the material,interface,composite electrode,and battery levels,with a view to accelerating the development of conversion-type cathodes for high-energy–density SSLBs.
基金supported in part by the National Nat-ural Science Foundation of China(No.51977012,No.52307080).
文摘This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar power and flexible loads on the EH,an interactive power model was developed to represent the EH’s operation under these influences.Additionally,an ADN security distance model,integrating an EH with flexible loads,was constructed to evaluate the effect of flexible load variations on the ADN’s security distance.By considering scenarios such as air conditioning(AC)load reduction and base station(BS)load transfer,the security distances of phases A,B,and C increased by 17.1%,17.2%,and 17.7%,respectively.Furthermore,a multi-objective optimal power flow model was formulated and solved using the Forward-Backward Power Flow Algorithm,the NSGA-II multi-objective optimization algo-rithm,and the maximum satisfaction method.The simulation results of the IEEE33 node system example demonstrate that after opti-mization,the total energy cost for one day is reduced by 0.026%,and the total security distance limit of the ADN’s three phases is improved by 0.1 MVA.This method effectively enhances the security distance,facilitates BS load transfer and AC load reduction,and contributes to the energy-saving,economical,and safe operation of the power system.
基金the financial support of a special fund from the Beijing Key Laboratory of Lignocellulosic Chemistry,College of Materials Science and Technology,Beijing Forestry UniversityFinancial support from NSERC Discovery grant(RGPIN-2017-06737)+1 种基金Canada Research Chair program is also acknowledgedthe China Scholarship Council(CSC)for its financial support(CSC No.202306510047)。
文摘In an era where technological advancement and sustainability converge,developing renewable materials with multifunctional integration is increasingly in demand.This study filled a crucial gap by integrating energy storage,multi-band electromagnetic interference(EMI)shielding,and structural design into bio-based materials.Specifically,conductive polymer layers were formed within the 2,2,6,6-tetramethylpiperidine-1-oxide(TEMPO)-oxidized cellulose fiber skeleton,where a mild TEMPO-mediated oxidation system was applied to endow it with abundant macropores that could be utilized as active sites(specific surface area of 105.6 m2 g-1).Benefiting from the special hierarchical porous structure of the material,the constructed cellulose fiber-derived composites can realize high areal-specific capacitance of 12.44 F cm^(-2)at 5 m A cm^(-2)and areal energy density of 3.99 m Wh cm^(-2)(2005 m W cm^(-2))with an excellent stability of maintaining 90.23%after 10,000 cycles at 50 m A cm^(-2).Meanwhile,the composites showed a high electrical conductivity of 877.19 S m-1 and excellent EMI efficiency(>99.99%)in multiple wavelength bands.The composite material’s EMI values exceed 100 d B across the L,S,C,and X bands,effectively shielding electromagnetic waves in daily life.The proposed strategy paves the way for utilizing bio-based materials in applications like energy storage and EMI shielding,contributing to a more sustainable future.
文摘EHL-2 spherical torus(ST)is one of the key steps of p-^(11)B(proton-boron or hydrogen-boron)fusion energy research in ENN.The fusion produced energy is carried mainly by alpha particles of average energy 3 MeV,which ideally can be converted to electricity with high efficiency(>80%).However,there exist serious difficulties to realize such conversion in a fusion device,due to the high energy density and high voltage required.To comprehensively describe the progress of the EHL-2 physics design,this work presents preliminary considerations of approaches for achieving energy conversion,highlighting critical issues for further investigation.Specifically,we provide an initial simulation of alpha particle extraction in the EHL-2 ST configuration as a starting point for p-^(11)B fusion energy conversion.
基金Supported by the National Natural Science Foundation of China(42072187)PetroChina Science and Technology Special Project(2021ZZ01-05)。
文摘Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins.Under the framework of a green and intelligent energy system primarily based on“four news”,new energy,new electricity,new energy storage,and new intelligence,integrating a“super energy system”composed of a huge amount of underground resources of coal,oil,gas and heat highly overlapping with abundant wind and solar energy resources above ground,and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy,with a carbon neutrality system centered around carbon cycling is essential.This paper aims to select the traditional oil and gas basins as“super energy basins”with the conditions to build world-class energy production and demonstration bases for carbon neutrality.The Ordos Basin has unique regional advantages,including abundant fossil fuel and new energy resources,as well as matching CO_(2)sources and sinks,position it as a carbon neutrality“super energy basin”which explores the path of transformation of traditional oil and gas basins.Under the integrated development concept and mode of“coal+oil+gas+new energy+carbon capture,utilization and storage(CCUS)/carbon capture and storage(CCS)”,the carbon neutrality in super energy basin is basically achieved,which enhance energy supply and contribute to the carbon peak and carbon neutrality goals,establish a modern energy industry and promote regional green and sustainable development.The pioneering construction of the world-class carbon neutrality“super energy system”demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins,which is of great significance to the global energy revolution under carbon neutrality.
文摘In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving.
基金supported in part by the MOST Major Research and Development Project(Grant No.2021YFB2900204)the National Natural Science Foundation of China(NSFC)(Grant No.62201123,No.62132004,No.61971102)+3 种基金China Postdoctoral Science Foundation(Grant No.2022TQ0056)in part by the financial support of the Sichuan Science and Technology Program(Grant No.2022YFH0022)Sichuan Major R&D Project(Grant No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2022D031)。
文摘Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.
基金the support from Grant No.2022VBA0023 funded by the Chinese Academy of Sciences President's International Fellowship Initiative.
文摘Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金supported by Key Science and Technology Innovation Team of Shaanxi Province(No.2022TD-33)National Natural Science Foundation of China(Grant Nos.21373161,21504067)。
文摘Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost.
基金the National Natural Science Foundation of China(Grant Nos.11972096,12372127 and 12202085)the Fundamental Research Funds for the Central Universities(Grant No.2022CDJQY004)+4 种基金Chongqing Natural Science Foundation(Grant No.cstc2021ycjh-bgzxm0117)China Postdoctoral Science Foundation(Grant No.2022M720562)Chongqing Postdoctoral Science Foundation(Grant No.2021XM3022)supported by the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)The opening project number is KFJJ23-18 M。
文摘This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on the geometric topology of the FSP system,three FSP configurations with the same areal density are derived,namely multi-layer,gradient core and asymmetric face sheet,and three key structural parameters are identified:core thickness(t_(c)),face sheet thickness(t_(f))and overlap face/core number(n_(o)).The ballistic performance of the FSP system is comprehensively evaluated in terms of the ballistic limit velocity(BLV),deformation modes,energy dissipation mechanism,and specific penetration energy(SPE).The results show that the FSP system exhibits a significant configuration dependence,whose ballistic performance ranking is:asymmetric face sheet>gradient core>multi-layer.The mass distribution of the top and bottom face sheets plays a critical role in the ballistic resistance of the FSP system.Both BLV and SPE increase with tf,while the raising tcor noleads to an increase in BLV but a decrease in SPE.Further,a face-core synchronous enhancement mechanism is discovered by the energy dissipation analysis,based on which the ballistic optimization procedure is also conducted and a design chart is established.This study shed light on the anti-penetration mechanism of the FSP system and might provide a theoretical basis for its engineering application.
文摘The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities for transitioning to sustainable renewable energy sources such as solar,wind,and hydrogen.This transition economically challenges traditional energy sectors while fostering new industries,promoting job growth,and sustainable economic development.The transition to renewable energy demands social equity,ensuring universal access to affordable energy,and considering community impact.The environmental benefits include a significant reduction in greenhouse gas emissions and a lesser ecological footprint.This study highlights the rapid growth of the global wind power market,which is projected to increase from$112.23 billion in 2022 to$278.43 billion by 2030,with a compound annual growth rate of 13.67%.In addition,the demand for hydrogen is expected to increase,significantly impacting the market with potential cost reductions and making it a critical renewable energy source owing to its affordability and zero emissions.By 2028,renewables are predicted to account for 42%of global electricity generation,with significant contributions from wind and solar photovoltaic(PV)technology,particularly in China,the European Union,the United States,and India.These developments signify a global commitment to diversifying energy sources,reducing emissions,and moving toward cleaner and more sustainable energy solutions.This review offers stakeholders the insights required to smoothly transition to sustainable energy,setting the stage for a resilient future.
基金Project supported by the National Natural Science Foundation of China(Grant No.12002089)the Science and Technology Projects in Guangzhou(Grant No.2023A04J1323)UKRI Horizon Europe Guarantee(Grant No.EP/Y016130/1)。
文摘Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high vibration attenuation and robustness across a wide frequency spectrum. Energy harvester is a device employed to convert kinetic energy into usable electric energy. In this paper, we propose an electromagnetic energy harvester enhanced viscoelastic nonlinear energy sink(VNES) to achieve passive vibration suppression and energy harvesting simultaneously. A critical departure from prior studies is the investigation of the stochastic P-bifurcation of the electromechanically coupled VNES system under narrowband random excitation. Initially, approximate analytical solutions are derived using a combination of a multiple-scale method and a perturbation approach. The substantial agreement between theoretical analysis solutions and numerical solutions obtained from Monte Carlo simulation underscores the method's high degree of validity. Furthermore, the effects of system parameters on system responses are carefully examined. Additionally, we demonstrate that stochastic P-bifurcation can be induced by system parameters, which is further verified by the steady-state density functions of displacement. Lastly,we analyze the impacts of various parameters on the mean square current and the mean output power, which are crucial for selecting suitable parameters to enhance the energy harvesting performance.