An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-un...An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-uniform mass suction through the porous sheet is considered.Using Keller-box method the transformed equations are solved numerically.The results of skin friction coefficient,the local Nusselt number as well as the velocity and temperature profiles are presented for different flow parameters.The results showed that the dual non-similar solutions exist only when certain amount of mass suction is applied through the porous sheet for various unsteady parameters and nanoparticle volume fractions.The ranges of suction where dual non-similar solution exists,become larger when values of unsteady parameter as well as nanoparticle volume fraction increase.So,due to unsteadiness of flow dynamics and the presence of nanoparticles in flow field,the requirement of mass suction for existence of solution of boundary layer flow past an exponentially shrinking sheet is less.Furthermore,the velocity boundary layer thickness decreases and thermal boundary layer thickness increases with increasing of nanoparticle volume fraction in both non-similar solutions.Whereas,for stronger mass suction,the velocity boundary layer thickness becomes thinner for the first solution and the effect is opposite in the case of second solution.The temperature inside the boundary layer increases with nanoparticle volume fraction and decreases with mass suction.So,for the unsteadiness and for the presence of nanoparticles,the flow separation is delayed to some extent.展开更多
Taking low permeability cores of Daqing oilfield for example,the flow characteristics at low velocity were studied with the self-designed micro-flux measuring instrument.Considering the throat distribution and capilla...Taking low permeability cores of Daqing oilfield for example,the flow characteristics at low velocity were studied with the self-designed micro-flux measuring instrument.Considering the throat distribution and capillary model,the thickness of fluid boundary layer under different pressure gradients was calculated,and the mechanism and influencing factors of nonlinear percolation were discussed.The results show that the percolation curve of ultra-low rocks is nonlinear,and apparent permeability is not a constant which increases with pressure gradient.The absorption boundary layer decreases with the increase of pressure gradient,and changes significantly especially in low pressure gradient,which is the essence of nonlinear percolation.The absorption boundary layer is also found to be impacted by the surface property of rocks.展开更多
A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simula...A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simulations using CFD code are employed to investigate the boundary layer and the hydrodynamic flow.To validate the current numerical model,measurement points from published works were used,and the compared results were in good compliance.Simulations were carried out for the velocity series of 0.04,0.4 and 4 m/s and nanoparticle concentrations0.1% and 5%.The influence of nanoparticles’ concentration on velocity,temperature profiles,wall shear stress,and turbulent intensity was investigated.The obtained results showed that the viscous sub-layer,the buffer layer,and the loglaw layer along the potential-flow layer could be analyzed based on their curving quality in the regions which have just a single wall distance.It was seen that the viscous sub-layer is the biggest area in comparison with other areas.Alternatively,the section where the temperature changes considerably correspond to the thermal boundary layer’s thickness goes a downward trend when the velocity decreases.The thermal boundary layer gets deep away from the leading edge.However,a rise in the volume fraction of nanoparticles indicated a minor impact on the shear stress developed in the wall.In all cases,the thickness of the boundary layer undergoes a downward trend as the velocity increases,whereas increasing the nanoparticle concentrations would enhance the thickness.More precisely,the log layer is closed with log law,and it is minimal between Y^(+)=50 and Y^(+)=95.The temperature for nanoparticle concentration φ=5%is higher than that for φ=0.1%,in boundary layers,for all studied nanofluids.However,it is established that the behavior is inverted from the value of Y^(+)=1 and the temperature for φ =0.1% is more important than the case of φ =5%.For turbulence intensity peak,this peak exists at Y^(+)=100 for v=4 m/s,Y^(+)=10 for v=0.4 m/s and Y^(+)=8 for v=0.04 m/s.展开更多
Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,...Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.展开更多
Kinematic models compute the temperature distribution by prescribing a constant convergent velocity for the subducting slab,resulting in an artificial velocity discontinuity,which may accelerate the heating of subduct...Kinematic models compute the temperature distribution by prescribing a constant convergent velocity for the subducting slab,resulting in an artificial velocity discontinuity,which may accelerate the heating of subducting slabs.For the purpose to moderate the influence of such artificial discontinuity, we construct a 2D thermal model for subduction zones with a velocity boundary layer,within which the velocities decrease linearly with the distance from the interfaces of slabs.Temperatures are calculated展开更多
In this review,we discuss the structure and dynamics of the magnetospheric LowLatitude Boundary Layer(LLBL)based on recent results from multi-satellite missions Cluster and Double Star.This boundary layer,adjacent to ...In this review,we discuss the structure and dynamics of the magnetospheric LowLatitude Boundary Layer(LLBL)based on recent results from multi-satellite missions Cluster and Double Star.This boundary layer,adjacent to the magnetopause on the magnetospheric side,usually consists of a mixture of plasma of magnetospheric and magnetosheath origins,and plays an important role in the transfer of mass and energy from the solar wind into the magnetosphere and subsequent magnetospheric dynamics.During southward Interplanetary Magnetic Field(IMF)conditions,this boundary layer is generally considered to be formed as a result of the reconnection process between the IMF and magnetospheric magnetic field lines at the dayside magnetopause,and the structure and plasma properties inside the LLBL can be understood in terms of the time history since the reconnection process.During northward IMF conditions,the LLBL is usually thicker,and has more complex structure and topology.Recent observations confirm that the LLBL observed at the dayside can be formed by single lobe reconnection,dual lobe reconnection,or by sequential dual lobe reconnection,as well as partially by localized cross-field diffusion.The LLBL magnetic topology and plasma signatures inside the different sub-layers formed by these processes are discussed in this review.The role of the Kelvin-Helmholtz instability in the formation of the LLBL at the flank magnetopause is also discussed.Overall,we conclude that the LLBL observed at the flanks can be formed by the combination of processes,(dual)lobe reconnection and plasma mixing due to non-linear Kelvin-Helmholtz waves.展开更多
研究了复杂微细导线电容矩阵提取边界元法(boundary element method,BEM)的边界离散问题以及增强计算精度和数值稳定性的有效措施,分析了开阔边界尺寸、开阔边界离散、导线离散对计算精度的影响以及伪解、矩阵奇异性问题,提出了基于导...研究了复杂微细导线电容矩阵提取边界元法(boundary element method,BEM)的边界离散问题以及增强计算精度和数值稳定性的有效措施,分析了开阔边界尺寸、开阔边界离散、导线离散对计算精度的影响以及伪解、矩阵奇异性问题,提出了基于导线离散迭代和开阔边界迭代两阶段自动迭代边界元算法(automatic iterative boundary element method,AIBEM),并结合实例阐述了全域法和区域分解法两种多层介质问题系数矩阵生成方法。研究结果表明,边界环内生成的系数矩阵存在误差均衡协调问题,对复杂模型需合理选择各线段离散单元数及开阔边界尺寸,通过AIBEM可以获得经济的离散参数,有效避免矩阵奇异性,并提高收敛稳定性。将计算结果与有限元法、解析法、传输线法、矩量法进行了对比分析,证实了算法的可靠性。展开更多
基金the National Board for Higher Mathematics (NBHM),Department of Atomic Energy,Government of India for the financial support in pursuing this workthe financial support from MOHE and the Research Management Center-UTM through FRGS and RUG vote number 4F109 and 02H80 for this research
文摘An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-uniform mass suction through the porous sheet is considered.Using Keller-box method the transformed equations are solved numerically.The results of skin friction coefficient,the local Nusselt number as well as the velocity and temperature profiles are presented for different flow parameters.The results showed that the dual non-similar solutions exist only when certain amount of mass suction is applied through the porous sheet for various unsteady parameters and nanoparticle volume fractions.The ranges of suction where dual non-similar solution exists,become larger when values of unsteady parameter as well as nanoparticle volume fraction increase.So,due to unsteadiness of flow dynamics and the presence of nanoparticles in flow field,the requirement of mass suction for existence of solution of boundary layer flow past an exponentially shrinking sheet is less.Furthermore,the velocity boundary layer thickness decreases and thermal boundary layer thickness increases with increasing of nanoparticle volume fraction in both non-similar solutions.Whereas,for stronger mass suction,the velocity boundary layer thickness becomes thinner for the first solution and the effect is opposite in the case of second solution.The temperature inside the boundary layer increases with nanoparticle volume fraction and decreases with mass suction.So,for the unsteadiness and for the presence of nanoparticles,the flow separation is delayed to some extent.
基金Project(2008ZX05013) supported by the National Science and Technology Project of ChinaProject(10672187) supported by the National Natural Science Foundation of China
文摘Taking low permeability cores of Daqing oilfield for example,the flow characteristics at low velocity were studied with the self-designed micro-flux measuring instrument.Considering the throat distribution and capillary model,the thickness of fluid boundary layer under different pressure gradients was calculated,and the mechanism and influencing factors of nonlinear percolation were discussed.The results show that the percolation curve of ultra-low rocks is nonlinear,and apparent permeability is not a constant which increases with pressure gradient.The absorption boundary layer decreases with the increase of pressure gradient,and changes significantly especially in low pressure gradient,which is the essence of nonlinear percolation.The absorption boundary layer is also found to be impacted by the surface property of rocks.
基金support he received through General Research Project under the grant number (R.G.P.2/138/42)。
文摘A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simulations using CFD code are employed to investigate the boundary layer and the hydrodynamic flow.To validate the current numerical model,measurement points from published works were used,and the compared results were in good compliance.Simulations were carried out for the velocity series of 0.04,0.4 and 4 m/s and nanoparticle concentrations0.1% and 5%.The influence of nanoparticles’ concentration on velocity,temperature profiles,wall shear stress,and turbulent intensity was investigated.The obtained results showed that the viscous sub-layer,the buffer layer,and the loglaw layer along the potential-flow layer could be analyzed based on their curving quality in the regions which have just a single wall distance.It was seen that the viscous sub-layer is the biggest area in comparison with other areas.Alternatively,the section where the temperature changes considerably correspond to the thermal boundary layer’s thickness goes a downward trend when the velocity decreases.The thermal boundary layer gets deep away from the leading edge.However,a rise in the volume fraction of nanoparticles indicated a minor impact on the shear stress developed in the wall.In all cases,the thickness of the boundary layer undergoes a downward trend as the velocity increases,whereas increasing the nanoparticle concentrations would enhance the thickness.More precisely,the log layer is closed with log law,and it is minimal between Y^(+)=50 and Y^(+)=95.The temperature for nanoparticle concentration φ=5%is higher than that for φ=0.1%,in boundary layers,for all studied nanofluids.However,it is established that the behavior is inverted from the value of Y^(+)=1 and the temperature for φ =0.1% is more important than the case of φ =5%.For turbulence intensity peak,this peak exists at Y^(+)=100 for v=4 m/s,Y^(+)=10 for v=0.4 m/s and Y^(+)=8 for v=0.04 m/s.
文摘Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.
文摘Kinematic models compute the temperature distribution by prescribing a constant convergent velocity for the subducting slab,resulting in an artificial velocity discontinuity,which may accelerate the heating of subducting slabs.For the purpose to moderate the influence of such artificial discontinuity, we construct a 2D thermal model for subduction zones with a velocity boundary layer,within which the velocities decrease linearly with the distance from the interfaces of slabs.Temperatures are calculated
文摘In this review,we discuss the structure and dynamics of the magnetospheric LowLatitude Boundary Layer(LLBL)based on recent results from multi-satellite missions Cluster and Double Star.This boundary layer,adjacent to the magnetopause on the magnetospheric side,usually consists of a mixture of plasma of magnetospheric and magnetosheath origins,and plays an important role in the transfer of mass and energy from the solar wind into the magnetosphere and subsequent magnetospheric dynamics.During southward Interplanetary Magnetic Field(IMF)conditions,this boundary layer is generally considered to be formed as a result of the reconnection process between the IMF and magnetospheric magnetic field lines at the dayside magnetopause,and the structure and plasma properties inside the LLBL can be understood in terms of the time history since the reconnection process.During northward IMF conditions,the LLBL is usually thicker,and has more complex structure and topology.Recent observations confirm that the LLBL observed at the dayside can be formed by single lobe reconnection,dual lobe reconnection,or by sequential dual lobe reconnection,as well as partially by localized cross-field diffusion.The LLBL magnetic topology and plasma signatures inside the different sub-layers formed by these processes are discussed in this review.The role of the Kelvin-Helmholtz instability in the formation of the LLBL at the flank magnetopause is also discussed.Overall,we conclude that the LLBL observed at the flanks can be formed by the combination of processes,(dual)lobe reconnection and plasma mixing due to non-linear Kelvin-Helmholtz waves.
文摘研究了复杂微细导线电容矩阵提取边界元法(boundary element method,BEM)的边界离散问题以及增强计算精度和数值稳定性的有效措施,分析了开阔边界尺寸、开阔边界离散、导线离散对计算精度的影响以及伪解、矩阵奇异性问题,提出了基于导线离散迭代和开阔边界迭代两阶段自动迭代边界元算法(automatic iterative boundary element method,AIBEM),并结合实例阐述了全域法和区域分解法两种多层介质问题系数矩阵生成方法。研究结果表明,边界环内生成的系数矩阵存在误差均衡协调问题,对复杂模型需合理选择各线段离散单元数及开阔边界尺寸,通过AIBEM可以获得经济的离散参数,有效避免矩阵奇异性,并提高收敛稳定性。将计算结果与有限元法、解析法、传输线法、矩量法进行了对比分析,证实了算法的可靠性。