How to ensure the security of device access is a common concern in the Internet of Things(IoT)scenario with extremely high device connection density.To achieve efficient and secure network access for IoT devices with ...How to ensure the security of device access is a common concern in the Internet of Things(IoT)scenario with extremely high device connection density.To achieve efficient and secure network access for IoT devices with constrained resources,this paper proposes a lightweight physical-layer authentication protocol based on Physical Unclonable Function(PUF)and channel pre-equalization.PUF is employed as a secret carrier to provide authentication credentials for devices due to its hardware-based uniqueness and unclonable property.Meanwhile,the short-term reciprocity and spatio-temporal uniqueness of wireless channels are utilized to attach an authentication factor related to the spatio-temporal position of devices and to secure the transmission of authentication messages.The proposed protocol is analyzed formally and informally to prove its correctness and security against typical attacks.Simulation results show its robustness in various radio environments.Moreover,we illustrate the advantages of our protocol in terms of security features and complexity through performance comparison with existing authentication schemes.展开更多
The air traffic management(ATM)system is an intelligent system,which integrates the ground computer network,airborne network and space satellite(communication and navigation)network by the ground-air data link system....The air traffic management(ATM)system is an intelligent system,which integrates the ground computer network,airborne network and space satellite(communication and navigation)network by the ground-air data link system.Due to the openness and widely distribution of ATM system,the trust relationship of all parties in the system is pretty complex.At present,public key infrastructure(PKI)based identity authentication method is more and more difficult to meet the growing demand of ATM service.First,through the analysis of the organizational structure and operation mode of ATM system,this paper points out the existing identity authentication security threats in ATM system,and discusses the advantages of adopting blockchain technology in ATM system.Further,we briefly analyze some shortcomings of the current PKI-based authentication system in ATM.Particularly,to address the authentication problem,this paper proposes and presents a trusted ATM Security Authentication Model and authentication protocol based on blockchain.Finally,this paper makes a comprehensive analysis and simulation of the proposed security authentication scheme,and gets the expected effect.展开更多
In the existing ghost-imaging-based cryptographic key distribution(GCKD)protocols,the cryptographic keys need to be encoded by using many modulated patterns,which undoubtedly incurs long measurement time and huge memo...In the existing ghost-imaging-based cryptographic key distribution(GCKD)protocols,the cryptographic keys need to be encoded by using many modulated patterns,which undoubtedly incurs long measurement time and huge memory consumption.Given this,based on snapshot compressive ghost imaging,a public network cryptographic key distribution protocol is proposed,where the cryptographic keys and joint authentication information are encrypted into several color block diagrams to guarantee security.It transforms the previous single-pixel sequential multiple measurements into multi-pixel single exposure measurements,significantly reducing sampling time and memory storage.Both simulation and experimental results demonstrate the feasibility of this protocol and its ability to detect illegal attacks.Therefore,it takes GCKD a big step closer to practical applications.展开更多
The BeiDou-Ⅱcivil navigation message(BDⅡ-CNAV)is transmitted in an open environment and no information integrity protection measures are provided.Hence,the BDⅡ-CNAV faces the threat of spoofing attacks,which can le...The BeiDou-Ⅱcivil navigation message(BDⅡ-CNAV)is transmitted in an open environment and no information integrity protection measures are provided.Hence,the BDⅡ-CNAV faces the threat of spoofing attacks,which can lead to wrong location reports and time indication.In order to deal with this threat,we proposed a scheme of anti-spoofing for BDⅡ-CNAV based on integrated information authentication.This scheme generates two type authentication information,one is authentication code information(ACI),which is applied to confirm the authenticity and reliability of satellite time information,and the other is signature information,which is used to authenticate the integrity of satellite location information and other information.Both authentication information is designed to embed into the reserved bits in BDⅡ-CNAV without changing the frame structure.In order to avoid authentication failure caused by public key error or key error,the key or public key prompt information(KPKPI)are designed to remind the receiver to update both keys in time.Experimental results indicate that the scheme can successfully detect spoofing attacks,and the authentication delay is less than 1%of the transmission delay,which meets the requirements of BDⅡ-CNAV information authentication.展开更多
Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approac...Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approach by distributing authentication services to edge authentication gateways and servers,facilitated by blockchain technology,thus aligning with the decentralized ethos of Web3 infrastructure.Additionally,we enhance device security against physical and cloning attacks by integrating physical unclonable functions with certificateless cryptography,bolstering the integrity of Internet of Thins(IoT)devices within the evolving landscape of the metaverse.To achieve dynamic anonymity and ensure privacy within Web3 environments,we employ fuzzy extractor technology,allowing for updates to pseudonymous identity identifiers while maintaining key consistency.The proposed protocol ensures continuous and secure identity authentication for IoT devices in practical applications,effectively addressing the pressing security concerns inherent in IoT network environments and contributing to the development of robust security infrastructure essential for the proliferation of IoT devices across diverse settings.展开更多
Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a s...Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.展开更多
Because the modified remote user authentication scheme proposed by Shen, Lin and Hwang is insecure, the Shen-Lin-Hwang' s scheme is improved and a new secure remote user authentication scheme based on the bi- linear ...Because the modified remote user authentication scheme proposed by Shen, Lin and Hwang is insecure, the Shen-Lin-Hwang' s scheme is improved and a new secure remote user authentication scheme based on the bi- linear parings is proposed. Moreover, the effectiveness of the new scheme is analyzed, and it is proved that the new scheme can prevent from all kinds of known attack. The one-way hash function is effective in the new scheme. The new scheme is proved that it has high effectiveness and fast convergence speed. Moreover, the ap- plication of the new scheme is easy and operational.展开更多
The grid technology is recognized as the next generation of Internet and becomcs the center of recent researches in the computer society. Security is one of the most crucial issues to address in Internet and is of the...The grid technology is recognized as the next generation of Internet and becomcs the center of recent researches in the computer society. Security is one of the most crucial issues to address in Internet and is of the same importance in the application of grid technology. As a critical component of grid security, the secure authen- tication needs to be well studied. In this paper, a two-step mobile agent based(TSMAB) authentication architecture is proposed based on Globus security infrastructure (GSI). By using mobile agent (MA) technology, the TSMAB authentication architecture is composed of the junior-authentication and the senior-authentication. Based on the design and the analysis of TSMAB model, the result shows that the efficiency of grid authentication is improved compared with the GSI authentication.展开更多
Data sharing and privacy securing present extensive opportunities and challenges in vehicular network.This paper introducestrust access authentication scheme’as a mechanism to achieve real-time monitoring and promote...Data sharing and privacy securing present extensive opportunities and challenges in vehicular network.This paper introducestrust access authentication scheme’as a mechanism to achieve real-time monitoring and promote collaborative sharing for vehicles.Blockchain,which can provide secure authentication and protected privacy,is a crucial technology.However,traditional cloud computing performs poorly in supplying low-latency and fast-response services for moving vehicles.In this situation,edge computing enabled Blockchain network appeals to be a promising method,where moving vehicles can access storage or computing resource and get authenticated from Blockchain edge nodes directly.In this paper,a hierarchical architecture is proposed consist of vehicular network layer,Blockchain edge layer and Blockchain network layer.Through a authentication mechanism adopting digital signature algorithm,it achieves trusted authentication and ensures valid verification.Moreover,a caching scheme based on many-to-many matching is proposed to minimize average delivery delay of vehicles.Simulation results prove that the proposed caching scheme has a better performance than existing schemes based on central-ized model or edge caching strategy in terms of hit ratio and average delay.展开更多
A multiparty simultaneous quantum identity authentication protocol based on Creenberger-Horne-Zeilinger (GHZ) states is proposed. The multi-user can be authenticated by a trusted third party (TTP) simultaneously. ...A multiparty simultaneous quantum identity authentication protocol based on Creenberger-Horne-Zeilinger (GHZ) states is proposed. The multi-user can be authenticated by a trusted third party (TTP) simultaneously. Compared with the scheme proposed recently (Wang et al 2006 Chin. Phys. Lett. 23(9) 2360), the proposed scheme has the advantages of consuming fewer quantum and classical resources and lessening the difficulty and intensity of necessary operations.展开更多
A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit tw...A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.展开更多
In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-...In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-Podolsky-Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the‘ping-pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.展开更多
An authentication multiple key agreement protocol allows the users to compute more than one session keys in an authentication way. In the paper,an identity-based authentication multiple key agreement protocol is propo...An authentication multiple key agreement protocol allows the users to compute more than one session keys in an authentication way. In the paper,an identity-based authentication multiple key agreement protocol is proposed. Its authentication part is proven secure against existential forgery on adaptively chosen message and ID attacks under the random oracle model upon the CDH assumptions. The session keys are proven secure in a formal CK security model under the random oracle model upon the CBDH assumptions. Compared with the previous multiple key agreement protocols,it requires less communication cost.展开更多
An automatic dependent surveillance- broadcast (ADS-B) system has serious security problems, and the data can be spoofed during broadcasting precise position information of aircraft. A solution of the ADS-B system d...An automatic dependent surveillance- broadcast (ADS-B) system has serious security problems, and the data can be spoofed during broadcasting precise position information of aircraft. A solution of the ADS-B system data authentication based on the elliptic curve cipher (ECC) and X.509 certificate is proposed. It can avoid the key distribution problem by using the symmetric key algorithm and prevent the ADS-B data from being spoofed thoroughly. Experimental test results show that the solution is valid and appropriate in ADS-B universal access transceiver (UAT) mode.展开更多
In this paper, we suggest a controlled mutual quantum entity authentication protocol by which two users mutually certify each other on a quantum network using a sequence of Greenberger–Horne–Zeilinger(GHZ)-like st...In this paper, we suggest a controlled mutual quantum entity authentication protocol by which two users mutually certify each other on a quantum network using a sequence of Greenberger–Horne–Zeilinger(GHZ)-like states. Unlike existing unidirectional quantum entity authentication, our protocol enables mutual quantum entity authentication utilizing entanglement swapping; moreover, it allows the managing trusted center(TC) or trusted third party(TTP) to effectively control the certification of two users using the nature of the GHZ-like state. We will also analyze the security of the protocol and quantum channel.展开更多
From the viewpoint of protocol sequence, analyses are made of the sequence patterns of possible identity authentication protocol under two cases: with or without the trusted third party (TFP). Ten feasible sequence...From the viewpoint of protocol sequence, analyses are made of the sequence patterns of possible identity authentication protocol under two cases: with or without the trusted third party (TFP). Ten feasible sequence patterns of authentication protocol with TIP and 5 sequence patterns without TFP are gained. These gained sequence patterns meet the requirements for identity authentication, and basically cover almost all the authentication protocols with TFP and without TFP at present. All of the sequence patterns gained are classified into unilateral or bilateral authentication. Then, according to the sequence symmetry, several good sequence patterns with TFP are evaluated. The accompolished results can provide a reference to design of new identity authentication protocols.展开更多
The long authentication handover delay is the greatest challenge in multi-domain SDN environment. In order to solve this problem, an authentication handover mechanism under multi-SDN domain(AHMMD) is proposed in this ...The long authentication handover delay is the greatest challenge in multi-domain SDN environment. In order to solve this problem, an authentication handover mechanism under multi-SDN domain(AHMMD) is proposed in this paper. In AHMMD, firstly, when the mobility entity accesses the network for the first time, its identity and service attributes are authenticated by the flow authentication protocol, which is designed based on the asymmetric encryption key; secondly, when the mobility entity moves to the neighbor domain, the authentication information will be delivered from the current controller to the neighborhood controller through a security communication channel. In order to promote the efficiency, a handover time prediction algorithm is adopted in AHMMD. Experimental results based on our AHMMD prototype have shown that the handover delay decreases by 50% while the handover cost decreases by 60%.展开更多
In order to relvedy the security weaknesses of a robust user authentication framework for wireless sensor networks, an enhanced user authentication framework is presented. The enhanced scheme requires proof of the pos...In order to relvedy the security weaknesses of a robust user authentication framework for wireless sensor networks, an enhanced user authentication framework is presented. The enhanced scheme requires proof of the possession of both a password and a snort card, and provides more security guarantees in two aspects: 1) it addresses the untmceability property so that any third party accessing the communication channel cannot link two authentication sessions originated from the same user, and 2) the use of a smart card prevents offiine attacks to guess passwords. The security and efficiency analyses indicate that our enhanced scheme provides the highest level of security at reasonable computational costs. Therefore, it is a practical authentication scheme with attractive security features for wireless sensor networks.展开更多
When accessing remote services over public networks, a user authentication mechanism is required because these activities are executed in an insecure communication environment. Recently, Wang et al. proposed an authen...When accessing remote services over public networks, a user authentication mechanism is required because these activities are executed in an insecure communication environment. Recently, Wang et al. proposed an authentication and key agreement scheme preserving the privacy of secret keys and providing user anonymity. Later, Chang et al. indicated that their scheme suffers from two security flaws. First, it cannot resist DoS (denial-of-service) attack because the indicators for the next session are not consistent. Second, the user password may be modified by a malicious attacker because no authentication mechanism is applied before the user password is updated. To eliminate the security flaws and preserve the advantages of Wang et aL's scheme, we propose an improvement in this paper.展开更多
Many improved authentication solutions were put forward, on purpose of authenticating more quickly and securely.However, neither the overuse of hash function,or additional symmetric encryption, can truly increase the ...Many improved authentication solutions were put forward, on purpose of authenticating more quickly and securely.However, neither the overuse of hash function,or additional symmetric encryption, can truly increase the overall security. Instead,extra computation cost degraded the performance.They were still vulnerable to a variety of threats, such as smart card loss attack and impersonation attack, due to hidden loopholes and flaws. Even worse, user's identity can be parsed in insecure environment, even became traceable. Aiming to protect identity, a lightweight mutual authentication scheme is proposed. Redundant operations are removed,which make the verification process more explicit. It gains better performance with average cost compared to other similar schemes.Cryptanalysis shows the proposed scheme can resist common attacks and achieve user anonymity.Formal security is further verified by using the widely accepted Automated Validation of Internet Security Protocols and Applications(AVISPA) tool.展开更多
基金supported by National Natural Science Foundation of China(No.61931020,No.U19B2024 and No.62371462).
文摘How to ensure the security of device access is a common concern in the Internet of Things(IoT)scenario with extremely high device connection density.To achieve efficient and secure network access for IoT devices with constrained resources,this paper proposes a lightweight physical-layer authentication protocol based on Physical Unclonable Function(PUF)and channel pre-equalization.PUF is employed as a secret carrier to provide authentication credentials for devices due to its hardware-based uniqueness and unclonable property.Meanwhile,the short-term reciprocity and spatio-temporal uniqueness of wireless channels are utilized to attach an authentication factor related to the spatio-temporal position of devices and to secure the transmission of authentication messages.The proposed protocol is analyzed formally and informally to prove its correctness and security against typical attacks.Simulation results show its robustness in various radio environments.Moreover,we illustrate the advantages of our protocol in terms of security features and complexity through performance comparison with existing authentication schemes.
基金This work was supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418).
文摘The air traffic management(ATM)system is an intelligent system,which integrates the ground computer network,airborne network and space satellite(communication and navigation)network by the ground-air data link system.Due to the openness and widely distribution of ATM system,the trust relationship of all parties in the system is pretty complex.At present,public key infrastructure(PKI)based identity authentication method is more and more difficult to meet the growing demand of ATM service.First,through the analysis of the organizational structure and operation mode of ATM system,this paper points out the existing identity authentication security threats in ATM system,and discusses the advantages of adopting blockchain technology in ATM system.Further,we briefly analyze some shortcomings of the current PKI-based authentication system in ATM.Particularly,to address the authentication problem,this paper proposes and presents a trusted ATM Security Authentication Model and authentication protocol based on blockchain.Finally,this paper makes a comprehensive analysis and simulation of the proposed security authentication scheme,and gets the expected effect.
基金supported by the Beijing Natural Science Foundation(Grant No.4222016).
文摘In the existing ghost-imaging-based cryptographic key distribution(GCKD)protocols,the cryptographic keys need to be encoded by using many modulated patterns,which undoubtedly incurs long measurement time and huge memory consumption.Given this,based on snapshot compressive ghost imaging,a public network cryptographic key distribution protocol is proposed,where the cryptographic keys and joint authentication information are encrypted into several color block diagrams to guarantee security.It transforms the previous single-pixel sequential multiple measurements into multi-pixel single exposure measurements,significantly reducing sampling time and memory storage.Both simulation and experimental results demonstrate the feasibility of this protocol and its ability to detect illegal attacks.Therefore,it takes GCKD a big step closer to practical applications.
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)。
文摘The BeiDou-Ⅱcivil navigation message(BDⅡ-CNAV)is transmitted in an open environment and no information integrity protection measures are provided.Hence,the BDⅡ-CNAV faces the threat of spoofing attacks,which can lead to wrong location reports and time indication.In order to deal with this threat,we proposed a scheme of anti-spoofing for BDⅡ-CNAV based on integrated information authentication.This scheme generates two type authentication information,one is authentication code information(ACI),which is applied to confirm the authenticity and reliability of satellite time information,and the other is signature information,which is used to authenticate the integrity of satellite location information and other information.Both authentication information is designed to embed into the reserved bits in BDⅡ-CNAV without changing the frame structure.In order to avoid authentication failure caused by public key error or key error,the key or public key prompt information(KPKPI)are designed to remind the receiver to update both keys in time.Experimental results indicate that the scheme can successfully detect spoofing attacks,and the authentication delay is less than 1%of the transmission delay,which meets the requirements of BDⅡ-CNAV information authentication.
基金supported by the National Key Research and Development Program of China under Grant No.2021YFB2700600the National Natural Science Foundation of China under Grant No.62132013+5 种基金the Key Research and Development Programs of Shaanxi under Grant Nos.S2024-YF-YBGY-1540 and 2021ZDLGY06-03the Basic Strengthening Plan Program under Grant No.2023-JCJQ-JJ-0772the Key-Area Research and Development Program of Guangdong Province under Grant No.2021B0101400003Hong Kong RGC Research Impact Fund under Grant Nos.R5060-19 and R5034-18Areas of Excellence Scheme under Grant No.Ao E/E-601/22-RGeneral Research Fund under Grant Nos.152203/20E,152244/21E,152169/22E and152228/23E。
文摘Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approach by distributing authentication services to edge authentication gateways and servers,facilitated by blockchain technology,thus aligning with the decentralized ethos of Web3 infrastructure.Additionally,we enhance device security against physical and cloning attacks by integrating physical unclonable functions with certificateless cryptography,bolstering the integrity of Internet of Thins(IoT)devices within the evolving landscape of the metaverse.To achieve dynamic anonymity and ensure privacy within Web3 environments,we employ fuzzy extractor technology,allowing for updates to pseudonymous identity identifiers while maintaining key consistency.The proposed protocol ensures continuous and secure identity authentication for IoT devices in practical applications,effectively addressing the pressing security concerns inherent in IoT network environments and contributing to the development of robust security infrastructure essential for the proliferation of IoT devices across diverse settings.
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)the joint funds of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U2133203).
文摘Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.
基金Supported by the National Science Foundation for Young Scholars of China(61001091)~~
文摘Because the modified remote user authentication scheme proposed by Shen, Lin and Hwang is insecure, the Shen-Lin-Hwang' s scheme is improved and a new secure remote user authentication scheme based on the bi- linear parings is proposed. Moreover, the effectiveness of the new scheme is analyzed, and it is proved that the new scheme can prevent from all kinds of known attack. The one-way hash function is effective in the new scheme. The new scheme is proved that it has high effectiveness and fast convergence speed. Moreover, the ap- plication of the new scheme is easy and operational.
文摘The grid technology is recognized as the next generation of Internet and becomcs the center of recent researches in the computer society. Security is one of the most crucial issues to address in Internet and is of the same importance in the application of grid technology. As a critical component of grid security, the secure authen- tication needs to be well studied. In this paper, a two-step mobile agent based(TSMAB) authentication architecture is proposed based on Globus security infrastructure (GSI). By using mobile agent (MA) technology, the TSMAB authentication architecture is composed of the junior-authentication and the senior-authentication. Based on the design and the analysis of TSMAB model, the result shows that the efficiency of grid authentication is improved compared with the GSI authentication.
基金support by Research on Key Technologies of Dynamically Secure Identity Authentication and Risk Control of Power Business in the Science and Technology Project of State Grid Electric Power Company(No.5204XA19003F)National Natural Science Foundation of China(Grant No.601702048)
文摘Data sharing and privacy securing present extensive opportunities and challenges in vehicular network.This paper introducestrust access authentication scheme’as a mechanism to achieve real-time monitoring and promote collaborative sharing for vehicles.Blockchain,which can provide secure authentication and protected privacy,is a crucial technology.However,traditional cloud computing performs poorly in supplying low-latency and fast-response services for moving vehicles.In this situation,edge computing enabled Blockchain network appeals to be a promising method,where moving vehicles can access storage or computing resource and get authenticated from Blockchain edge nodes directly.In this paper,a hierarchical architecture is proposed consist of vehicular network layer,Blockchain edge layer and Blockchain network layer.Through a authentication mechanism adopting digital signature algorithm,it achieves trusted authentication and ensures valid verification.Moreover,a caching scheme based on many-to-many matching is proposed to minimize average delivery delay of vehicles.Simulation results prove that the proposed caching scheme has a better performance than existing schemes based on central-ized model or edge caching strategy in terms of hit ratio and average delay.
基金supported by the National High-Tech Research,Development Plan of China (Grant Nos 2006AA01Z440,2009AA012441 and 2009AA012437)National Basic Research Program of China (973 Program) (Grant No 2007CB311100)+5 种基金the National Natural Science Foundation of China (Grant Nos 60873191 and 60821001)the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No KM200810005004)Beijing Natural Science Foundation (Grant No 1093015)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast Universitythe ISN Open FoundationScience and Technology Program of Beijing (Grant No Z07000100720706)
文摘A multiparty simultaneous quantum identity authentication protocol based on Creenberger-Horne-Zeilinger (GHZ) states is proposed. The multi-user can be authenticated by a trusted third party (TTP) simultaneously. Compared with the scheme proposed recently (Wang et al 2006 Chin. Phys. Lett. 23(9) 2360), the proposed scheme has the advantages of consuming fewer quantum and classical resources and lessening the difficulty and intensity of necessary operations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60572071 and 60873101)Natural Science Foundation of Jiangsu Province (Grant Nos BM2006504, BK2007104 and BK2008209)College Natural Science Foundation of Jiangsu Province (Grant No 06KJB520137)
文摘A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2006AA01Z419), the Major Research plan of the National Natural Science Foundation of China (Grant No 90604023), National Laboratory for Moderm Communications Science Foundation of China (Grant No 9140C1101010601) and the 0pen Foundation of State Key Laboratory of Information Security (Graduate School of Chinese Academy of Sciences).
文摘In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-Podolsky-Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the‘ping-pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.
基金supported by a grant from the National Natural Science Foundation of China (10961013)
文摘An authentication multiple key agreement protocol allows the users to compute more than one session keys in an authentication way. In the paper,an identity-based authentication multiple key agreement protocol is proposed. Its authentication part is proven secure against existential forgery on adaptively chosen message and ID attacks under the random oracle model upon the CDH assumptions. The session keys are proven secure in a formal CK security model under the random oracle model upon the CBDH assumptions. Compared with the previous multiple key agreement protocols,it requires less communication cost.
基金supported by the National Natural Science Foundation of China under Grant No. 61179072the Civil Aviation Science Foundation of China
文摘An automatic dependent surveillance- broadcast (ADS-B) system has serious security problems, and the data can be spoofed during broadcasting precise position information of aircraft. A solution of the ADS-B system data authentication based on the elliptic curve cipher (ECC) and X.509 certificate is proposed. It can avoid the key distribution problem by using the symmetric key algorithm and prevent the ADS-B data from being spoofed thoroughly. Experimental test results show that the solution is valid and appropriate in ADS-B universal access transceiver (UAT) mode.
基金Project supported by the Research Foundation of Korea University
文摘In this paper, we suggest a controlled mutual quantum entity authentication protocol by which two users mutually certify each other on a quantum network using a sequence of Greenberger–Horne–Zeilinger(GHZ)-like states. Unlike existing unidirectional quantum entity authentication, our protocol enables mutual quantum entity authentication utilizing entanglement swapping; moreover, it allows the managing trusted center(TC) or trusted third party(TTP) to effectively control the certification of two users using the nature of the GHZ-like state. We will also analyze the security of the protocol and quantum channel.
文摘From the viewpoint of protocol sequence, analyses are made of the sequence patterns of possible identity authentication protocol under two cases: with or without the trusted third party (TFP). Ten feasible sequence patterns of authentication protocol with TIP and 5 sequence patterns without TFP are gained. These gained sequence patterns meet the requirements for identity authentication, and basically cover almost all the authentication protocols with TFP and without TFP at present. All of the sequence patterns gained are classified into unilateral or bilateral authentication. Then, according to the sequence symmetry, several good sequence patterns with TFP are evaluated. The accompolished results can provide a reference to design of new identity authentication protocols.
基金supported in part by the National Natural Science Foundation of China under Grant No.61402521Jiangsu Province Natural Science Foundation of China under Grant No.BK20140068
文摘The long authentication handover delay is the greatest challenge in multi-domain SDN environment. In order to solve this problem, an authentication handover mechanism under multi-SDN domain(AHMMD) is proposed in this paper. In AHMMD, firstly, when the mobility entity accesses the network for the first time, its identity and service attributes are authenticated by the flow authentication protocol, which is designed based on the asymmetric encryption key; secondly, when the mobility entity moves to the neighbor domain, the authentication information will be delivered from the current controller to the neighborhood controller through a security communication channel. In order to promote the efficiency, a handover time prediction algorithm is adopted in AHMMD. Experimental results based on our AHMMD prototype have shown that the handover delay decreases by 50% while the handover cost decreases by 60%.
基金This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT1078 the Key Program of NSFC-Guangdong Union Foundation under Grant No.U1135002+3 种基金 the Major National S&T Program under Grant No.2011ZX03005-002 the National Natural Science Foundation of China under Grants No. 61072066, No.61173135, No.61100230, No.61100233, No.61202389, No.61202390 the Natural Science Basic Research Plan in Shaanxi Province of China under Grants No.2012JQ8043, No. 2012JM8030, No. 2012JM8025, No2011JQ8003 the Fundamental Research Funds for the Central Universities under Cxants No. JY10000903001, No. K50511030004. The authors would like to thank the anonymous reviewers and the editor for their constructive comments that have helped us to improve this paper.
文摘In order to relvedy the security weaknesses of a robust user authentication framework for wireless sensor networks, an enhanced user authentication framework is presented. The enhanced scheme requires proof of the possession of both a password and a snort card, and provides more security guarantees in two aspects: 1) it addresses the untmceability property so that any third party accessing the communication channel cannot link two authentication sessions originated from the same user, and 2) the use of a smart card prevents offiine attacks to guess passwords. The security and efficiency analyses indicate that our enhanced scheme provides the highest level of security at reasonable computational costs. Therefore, it is a practical authentication scheme with attractive security features for wireless sensor networks.
基金supported by National Science Council under Grant No. 98-2221-E-025-007- and 99-2410-H-025-010-MY2
文摘When accessing remote services over public networks, a user authentication mechanism is required because these activities are executed in an insecure communication environment. Recently, Wang et al. proposed an authentication and key agreement scheme preserving the privacy of secret keys and providing user anonymity. Later, Chang et al. indicated that their scheme suffers from two security flaws. First, it cannot resist DoS (denial-of-service) attack because the indicators for the next session are not consistent. Second, the user password may be modified by a malicious attacker because no authentication mechanism is applied before the user password is updated. To eliminate the security flaws and preserve the advantages of Wang et aL's scheme, we propose an improvement in this paper.
基金supported by the National Key Research and Development Program of China (No. 2017YFC0820603)
文摘Many improved authentication solutions were put forward, on purpose of authenticating more quickly and securely.However, neither the overuse of hash function,or additional symmetric encryption, can truly increase the overall security. Instead,extra computation cost degraded the performance.They were still vulnerable to a variety of threats, such as smart card loss attack and impersonation attack, due to hidden loopholes and flaws. Even worse, user's identity can be parsed in insecure environment, even became traceable. Aiming to protect identity, a lightweight mutual authentication scheme is proposed. Redundant operations are removed,which make the verification process more explicit. It gains better performance with average cost compared to other similar schemes.Cryptanalysis shows the proposed scheme can resist common attacks and achieve user anonymity.Formal security is further verified by using the widely accepted Automated Validation of Internet Security Protocols and Applications(AVISPA) tool.