期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
基于MobileNet的轻量化云检测模型
1
作者 叶武剑 谢林峰 +2 位作者 刘怡俊 温晓卓 李扬 《自然资源遥感》 北大核心 2025年第3期95-103,共9页
针对现有云检测算法计算量和模型规模庞大、在边缘设备上的部署几乎不可行的问题,提出了一种基于MobileNet网络的轻量化云检测模型。该方法在下采样阶段,使用基于注意力机制的残差模块,通过分组卷积降低模型参数量,并结合通道重排机制... 针对现有云检测算法计算量和模型规模庞大、在边缘设备上的部署几乎不可行的问题,提出了一种基于MobileNet网络的轻量化云检测模型。该方法在下采样阶段,使用基于注意力机制的残差模块,通过分组卷积降低模型参数量,并结合通道重排机制和挤压激励(squeeze-and-excitation,SE)注意力模块来增强通道间的信息交流。通过这种方式,既减少了参数量和计算复杂度,又保持了对重要特征的提取能力。在上采样阶段,使用了RepConv模块和改进的空洞空间金字塔池化模块(atrous spatial pyramid pooling,ASPP),以提高网络的学习能力和捕捉图像细节与空间信息的能力。实验结果证明,该文模型在参数量和模型复杂度降低的情况下,能够实现较高精度的云检测,具备实用性和可行性。 展开更多
关键词 云检测 MobileNet网络 注意力机制 多尺度特征 空洞空间金字塔池化模块
在线阅读 下载PDF
基于FCN-AC-ASPP的手写体去除方法
2
作者 方海泉 邓明明 冶运涛 《高技术通讯》 CAS 2022年第9期972-979,共8页
针对印刷体和手写体分类准确率不够高的问题,本文首先提出了一种印刷体与手写体像素级样本制作方法,并制作了印刷体和手写体数据集。其次提出了一种基于带空洞卷积和空洞空间金字塔池化的全卷积神经网络(FCN-AC-ASPP)模型。经过对FCNAC-... 针对印刷体和手写体分类准确率不够高的问题,本文首先提出了一种印刷体与手写体像素级样本制作方法,并制作了印刷体和手写体数据集。其次提出了一种基于带空洞卷积和空洞空间金字塔池化的全卷积神经网络(FCN-AC-ASPP)模型。经过对FCNAC-ASPP模型的训练和检测,该模型的分类准确率平均交并比(IoU)达到96.10%,优于全卷积神经网络(FCN)、DeeplabV3+、带空洞卷积的全卷积神经网络(FCN-AC)模型。最后对于同时含有印刷体和手写体的新图片,用训练好的FCN-AC-ASPP模型对印刷体和手写体分类,从而把手写体去除。 展开更多
关键词 手写体 印刷体 分类 全卷积神经网络(FCN) 空洞卷积(AC) 空洞空间金字塔池化(aspp)
在线阅读 下载PDF
基于DeeplabV3+网络的轻量化语义分割算法 被引量:3
3
作者 张秀再 张昊 杨昌军 《科学技术与工程》 北大核心 2024年第24期10382-10393,共12页
针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高... 针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高计算速度;引入深度可分离卷积(deep separable convolution, DSC)与空洞空间金字塔(atrous spatia pyramid pooling, ASPP)中的膨胀卷积设计成新的深度可分离膨胀卷积(depthwise separable dilated convolution, DSD-Conv),即组成深度可分离空洞空间金字塔模块(DP-ASPP),扩大感受野的同时减少原本卷积参数量,提高运算速度;加入改进的双注意力机制模块分别对编码区生成的低级特征图和高级特征图进行处理,增强网络对不同维度特征信息提取的敏感性和准确性;融合使用交叉熵和Dice Loss两种损失函数,为模型提供更全面、更多样的优化。改进模型在PASCAL VOC 2012数据集上进行测试。实验结果表明:平均交并比由76.57%提升至79.07%,分割准确度由91.2%提升至94.3%。改进模型的网络参数量(params)减少了3.86×10~6,浮点计算量(GFLOPs)减少了117.98 G。因此,Faster-DeeplabV3+算法在大幅降低参数量、提高运算速度的同时保持较高语义分割效果。 展开更多
关键词 语义分割 DeeplabV3+ 轻量化 深度可分离卷积(DSC) 空洞空间金字塔池化(aspp)
在线阅读 下载PDF
改进YOLOv3的轻量级铸件焊缝表面缺陷检测 被引量:3
4
作者 李闯 马行 +3 位作者 穆春阳 刘永鹿 秦政硕 张弘 《组合机床与自动化加工技术》 北大核心 2024年第1期156-159,163,共5页
针对机械制造行业中铸件焊缝表面缺陷数据集少,被检测物体处于复杂环境下目标检测困难和识别准确率低等问题,提出了一种改进的YOLOv3算法。使用了有效的数据增强技术,提高了模型的鲁棒性,使其更加适用于真实环境;引入轻量级网络GhostNe... 针对机械制造行业中铸件焊缝表面缺陷数据集少,被检测物体处于复杂环境下目标检测困难和识别准确率低等问题,提出了一种改进的YOLOv3算法。使用了有效的数据增强技术,提高了模型的鲁棒性,使其更加适用于真实环境;引入轻量级网络GhostNet替换原始主干网络,降低模型参数量,减少训练时间;在主干网络最后一层输出端加入空间金字塔池化结构,提高模型的感受野和增强模型的抗干扰能力;在FPN(feature pyramid network)中引入1×1卷积和通道注意力机制,防止维度损失和提高对重要特征的关注度,增强对小目标的特征提取;在训练过程中引入Focal Loss,提高模型对正样本的预测准确率。实验结果表明,与原YOLOv3相比,改进模型在铸件焊缝缺陷数据集上mAP提升1.55%,小目标气孔AP提升4%,增加小目标识别精度。 展开更多
关键词 表面缺陷 铸件焊缝 YOLOv3 空间金字塔池化 GhostNet
在线阅读 下载PDF
改进YOLOv7的输电线路融冰刀闸状态识别方法 被引量:1
5
作者 高绪杰 李泽滔 +2 位作者 曾华荣 杨旗 张露松 《计算机工程与应用》 CSCD 北大核心 2024年第23期314-324,共11页
隔离刀闸状态的自动识别是冰期输电线路智能融冰倒闸操作中的关键环节。针对恶劣天气条件下,传统图像识别方法在识别融冰刀闸时精度较低的问题,提出了一种基于改进YOLOv7的融冰刀闸状态识别方法。在YOLOv7网络中引入自注意力机制(self-a... 隔离刀闸状态的自动识别是冰期输电线路智能融冰倒闸操作中的关键环节。针对恶劣天气条件下,传统图像识别方法在识别融冰刀闸时精度较低的问题,提出了一种基于改进YOLOv7的融冰刀闸状态识别方法。在YOLOv7网络中引入自注意力机制(self-attention,S-A)模块,以增强网络在低对比度图像中的全局特征提取能力。同时对网络中的SPPCSPC模块进行改进,引入空洞空间金字塔池化技术(atrous spatial pyramid pooling,ASPP),提高对搭接刀闸等此类大目标的识别能力。根据搭接刀闸的特殊结构、大小和位置,在损失函数中添加约束项,增强对刀闸识别的针对性。最后,设计了一个M-MBO加速网络,利用多分支架构在推理时简化模型,提高模型识别速度。实验结果表明,在保证识别速度的同时,改进的YOLOv7模型mAP值可达97.9%,相比改进前的方法平均精度均值提高了2.5个百分点,验证了该方法的有效性。 展开更多
关键词 YOLOv7 刀闸状态识别 自注意力机制 空洞空间金字塔池化(aspp) 损失函数约束项 M-MBO
在线阅读 下载PDF
基于改进YOLOv7的煤矿输送带异物识别算法 被引量:2
6
作者 刘海强 高业成 +1 位作者 陈晓晶 葛广建 《仪表技术与传感器》 CSCD 北大核心 2024年第10期95-99,共5页
针对煤矿井下图像不清晰以及YOLOv7定位误差较大的问题,提出了一种改进YOLOv7模型。首先通过直方图均衡化提高图像目标的清晰度,然后在YOLOv7的主干网络中添加二阶通道注意力模块(SOCA),使其专注于更有益的信息,添加空洞空间卷积池化金... 针对煤矿井下图像不清晰以及YOLOv7定位误差较大的问题,提出了一种改进YOLOv7模型。首先通过直方图均衡化提高图像目标的清晰度,然后在YOLOv7的主干网络中添加二阶通道注意力模块(SOCA),使其专注于更有益的信息,添加空洞空间卷积池化金字塔(ASPP)模块,以多尺度的方式捕获上下文信息。实验结果表明:应用于煤矿输送带异物识别时,改进YOLOv7优于YOLOv7、YOLOv5、YOLOv5-CBAM模型。 展开更多
关键词 煤矿输送带 异物识别 YOLOv7 直方图均衡化 二阶通道注意力(SOCA) 空洞空间卷积池化金字塔(aspp)
在线阅读 下载PDF
改进YOLOv3的红外弱小目标检测
7
作者 臧涛 傅志凌 +3 位作者 王喆 钮赛赛 王梦如 杨海 《计算机工程与设计》 北大核心 2024年第11期3479-3485,共7页
为解决在红外场景下小目标携带的特征信息较少,导致检测结果精度较低且容易出现漏检等问题,建立一种红外弱小目标检测模型。使用改进的K-means聚类算法对YOLOv3的anchor进行重新聚类,聚类中心点的迭代以交并比代替原来的欧氏距离。通过... 为解决在红外场景下小目标携带的特征信息较少,导致检测结果精度较低且容易出现漏检等问题,建立一种红外弱小目标检测模型。使用改进的K-means聚类算法对YOLOv3的anchor进行重新聚类,聚类中心点的迭代以交并比代替原来的欧氏距离。通过改进的空间金字塔池化模块将浅层空间特征与深层语义特征相融合,丰富红外弱小目标的特征信息。将EIoU引入到YOLOv3中,使目标框和锚框的宽度和高度的差异最小化。实验结果表明,该模型在SAITD数据集上的查准率达到了94.83%,平均查准率达到了89.26%,检测精度优于传统红外目标检测网络及部分深度目标检测网络。 展开更多
关键词 红外弱小目标检测 K-MEANS 空间金字塔池化 特征融合 EIoU YOLOv3 损失函数
在线阅读 下载PDF
面向畸变扭曲文档的两种图像矫正网络
8
作者 冯瑾 池越 +1 位作者 周亚同 何静飞 《数据采集与处理》 CSCD 北大核心 2024年第1期167-180,共14页
由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编... 由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编码器的网络结构,以实现自适应性图像矫正并提高文字识别正确率。首先提出空洞残差块和非对称卷积残差块两种残差块,然后将残差块与自编码器相结合,设计了一种非对称空洞自编码器网络;同时利用空间金字塔池化代替全连接层,并用非对称卷积残差块实现特征提取,设计了另一种空间金字塔自编码器网络。实验结果表明,与畸变图像相比,经非对称空洞自编码器网络矫正后的图像在OCR正确率、OCR召回率和文本相似度上分别提高了26.3%、20.4%和12.3%,而经空间金字塔自编码器网络矫正后的图像在正确率、召回率和文本相似度上分别提高了27.7%、22.0%和15.5%。与RectiNet等其他图像矫正网络相比,这两种网络可以自适应矫正多种类型的畸变文档图像,且矫正后的图像在文字识别上表现更为优异。本文提出的两种矫正网络能有效提高图像文字识别正确率、召回率和文本相似度,同时在鲁棒性、泛化性等方面与现有矫正网络相比具有明显的优势。 展开更多
关键词 图像矫正 畸变文档图像 机器学习 自编码器 卷积残差块 空间金字塔池化
在线阅读 下载PDF
基于卷积神经网络的语义分割算法研究 被引量:8
9
作者 熊炜 童磊 +3 位作者 金靖熠 王传胜 王娟 曾春艳 《计算机应用研究》 CSCD 北大核心 2021年第4期1261-1264,共4页
针对语义分割中残差网络并不能完好地提取图像信息和分割效果差的问题,提出一种联合特征金字塔模型(JFP)用来融合残差网络的输出特征,并结合暗黑空间金字塔池化模型(ASPP)进一步提取特征。在解码部分应用简单的解码结构,恢复图像尺寸完... 针对语义分割中残差网络并不能完好地提取图像信息和分割效果差的问题,提出一种联合特征金字塔模型(JFP)用来融合残差网络的输出特征,并结合暗黑空间金字塔池化模型(ASPP)进一步提取特征。在解码部分应用简单的解码结构,恢复图像尺寸完成语义分割;同时引入注意力模型作为辅助语义分割网络,辅助神经网络进行训练。该方法分别在Pascal VOC 2012数据集和增强的Pascal VOC 2012数据集上对网络进行训练,并在Pascal VOC 2012的验证集上进行测试,其平均交并集之比(mIoU)分别达到了78.55%和80.14%,表明该方法具有良好的语义分割性能。 展开更多
关键词 图像语义分割 联合特征金字塔模型 暗黑空间金字塔模型 注意力模型
在线阅读 下载PDF
编码-解码多尺度卷积神经网络人群计数方法 被引量:9
10
作者 孟月波 纪拓 +2 位作者 刘光辉 徐胜军 李彤月 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第5期149-157,共9页
针对基于多列卷积神经网络的人群计数方法存在的多尺度特征信息丢失、融合不佳以及密度图质量不高等问题,提出了一种编码-解码结构的多尺度卷积神经网络人群计数方法。编码器采用多列卷积捕获多尺度特征,通过空洞空间金字塔池化扩大感... 针对基于多列卷积神经网络的人群计数方法存在的多尺度特征信息丢失、融合不佳以及密度图质量不高等问题,提出了一种编码-解码结构的多尺度卷积神经网络人群计数方法。编码器采用多列卷积捕获多尺度特征,通过空洞空间金字塔池化扩大感受野并减少参数量,保留尺度特征和图像的上下文信息;解码器对编码器输出进行上采样,实现高层语义信息和编码器前端低层特征信息有效融合,从而提升了密度图的输出质量。为增强网络对计数的敏感性,在以往像素空间损失的基础上考虑了计数误差,提出了一种新型损失函数。采用Shanghai Tech、Mall以及自建数据集进行了对比实验,结果表明:与之前最优方法相比,所提方法在Shanghai Tech数据集Part_A部分的平均绝对误差和均方误差分别降低了8.3%和21.3%,Part_B部分分别降低了12.9%和12.0%,Mall数据集分别降低了15.1%和23.8%,自建数据集分别降低了13.5%和7.1%;在不同人群场景下,所提方法的人群计数准确性和鲁棒性均优于其他对比方法的。 展开更多
关键词 人群计数 编码-解码结构 多尺度 空洞空间金字塔池化 计数误差 损失函数
在线阅读 下载PDF
利用Deeplab v3提取高分辨率遥感影像道路 被引量:10
11
作者 韩玲 杨朝辉 +2 位作者 李良志 刘志恒 黄勃学 《遥感信息》 CSCD 北大核心 2021年第1期22-28,共7页
针对传统道路提取方法存在的道路边缘粗糙、抗干扰性弱、提取精度低等问题,提出了一种基于编码解码器的空洞卷积模型(Deeplab v3)的道路提取方法。首先,对原始高分辨率遥感影像进行标注;其次,利用标注数据集对Deeplab v3模型进行训练、... 针对传统道路提取方法存在的道路边缘粗糙、抗干扰性弱、提取精度低等问题,提出了一种基于编码解码器的空洞卷积模型(Deeplab v3)的道路提取方法。首先,对原始高分辨率遥感影像进行标注;其次,利用标注数据集对Deeplab v3模型进行训练、测试;最后,得到高分辨率遥感影像道路提取结果。分析结果可知,该模型能够较好地提取高分辨率遥感影像中的道路边缘特征,相比其他道路提取方法具有更高的提取精度和更加完整的道路信息,正确率可达到93%以上。 展开更多
关键词 道路提取 高分辨率遥感影像 深度学习 Deeplab v3 空洞卷积 空洞空间金字塔池化(aspp)
在线阅读 下载PDF
基于多尺度特征融合的遥感影像语义分割 被引量:3
12
作者 郭恒亮 牛子儒 +1 位作者 赫晓慧 田智慧 《计算机应用与软件》 北大核心 2023年第11期248-253,共6页
针对传统的遥感影像语义分割方法存在分类能力差和分割效果不精细的问题,设计并实现一种基于U-Net的多尺度特征融合网络。网络通过多尺度跳跃连接组合不同层级的语义特征;结合通道注意力机制增强跳跃连接中关键特征的表达能力;利用空洞... 针对传统的遥感影像语义分割方法存在分类能力差和分割效果不精细的问题,设计并实现一种基于U-Net的多尺度特征融合网络。网络通过多尺度跳跃连接组合不同层级的语义特征;结合通道注意力机制增强跳跃连接中关键特征的表达能力;利用空洞空间金字塔池化结构融合深层特征,进一步加强网络在复杂背景中的分类性能。在公开数据集Vaihingen上进行的实验表明,多尺度特征融合网络相比通用分割网络具有更高的表现性能和更好的实用价值。 展开更多
关键词 遥感影像 语义分割 多尺度跳跃连接 空洞空间金字塔池化 注意力机制
在线阅读 下载PDF
基于空洞空间金字塔池化和多头自注意力的特征提取网络 被引量:4
13
作者 万黎明 张小乾 +1 位作者 刘知贵 李理 《计算机应用》 CSCD 北大核心 2022年第S02期79-85,共7页
针对深度学习在图像处理领域中多尺度特征提取能力弱、特征内部信息捕获能力差的问题,提出了一种基于空洞空间金字塔池化和多头自注意力的特征提取网络(PPSANet)。首先,引入小扩张率的空洞卷积对空洞空间金字塔池化(ASPP)模型进行改进,... 针对深度学习在图像处理领域中多尺度特征提取能力弱、特征内部信息捕获能力差的问题,提出了一种基于空洞空间金字塔池化和多头自注意力的特征提取网络(PPSANet)。首先,引入小扩张率的空洞卷积对空洞空间金字塔池化(ASPP)模型进行改进,提高局部特征信息的感受野;其次,将改进的ASPP模型合并到残差网络(ResNet)的每个残差块中,使网络在多个维度上都具有多尺度特征提取能力;最后,将残差网络的底层残差块替换为多头自注意力(MHSA),增强网络特征学习能力,捕获数据和特征内部的相关性。图像分割实验中,与残差网络相比,在肺结节数据集中DICE相似系数(DICE)提升了5.16个百分点,肝癌数据集中DICE提升了5.22个百分点;目标检测实验中,与残差网络相比,平均精度均值(MAP)提升了2.9个百分点。实验结果表明,PPSANet能够有效解决图像处理中多尺度特征提取能力弱和内部信息捕获能力差的问题,在一定程度上提高了图像处理的能力。 展开更多
关键词 深度学习 特征提取 图像分割 目标检测 自注意力 空洞空间金字塔池化
在线阅读 下载PDF
基于深度学习的卫星图像道路分割算法 被引量:3
14
作者 张新华 黄梦醒 +3 位作者 张雨 李玉春 单怡晴 冯思玲 《计算机工程》 CAS CSCD 北大核心 2021年第10期306-313,共8页
针对道路分割时存在的梯度消失问题,构建基于U-Net的卫星道路图像语义分割模型。通过密集连接模块减少梯度消失,并引入空间空洞金字塔结构保留更多的图像特征,在学习深层次特征信息时采用注意力监督机制,提取道路要素的特征信息。在卫... 针对道路分割时存在的梯度消失问题,构建基于U-Net的卫星道路图像语义分割模型。通过密集连接模块减少梯度消失,并引入空间空洞金字塔结构保留更多的图像特征,在学习深层次特征信息时采用注意力监督机制,提取道路要素的特征信息。在卫星图像道路数据集上的测试结果表明,与FCN、SegNet、U_Net算法相比,该算法模型的准确率、召回率和精确率指标分别达到96.3%、96.9%和96.6%,能够有效地对道路元素进行准确分割。 展开更多
关键词 深度学习 道路分割 密集连接模块 空间空洞金字塔结构 注意力监督机制
在线阅读 下载PDF
基于密集连接与特征增强的语义分割算法 被引量:5
15
作者 马素刚 陈期梅 +2 位作者 侯志强 杨小宝 张子贤 《计算机工程》 CAS CSCD 北大核心 2023年第3期263-270,共8页
在语义分割算法DeepLabv3+中,由于对主干网络提取的特征信息利用不充分,导致了分割边缘不连续、目标丢失以及分割错误等问题。为此,提出一种基于密集连接和特征增强的语义分割算法。采用共享空洞空间金字塔池化(S-ASPP)模块建立多个空... 在语义分割算法DeepLabv3+中,由于对主干网络提取的特征信息利用不充分,导致了分割边缘不连续、目标丢失以及分割错误等问题。为此,提出一种基于密集连接和特征增强的语义分割算法。采用共享空洞空间金字塔池化(S-ASPP)模块建立多个空洞卷积之间的联系,增强局部信息之间的语义关联,捕获密集的采样点像素,同时提高对高层特征信息的利用。引入特征金字塔增强模块(FPEM)和特征融合模块(FFM),对主干网络输出的多层特征信息进行处理,增强特征的表达能力,并采用FFM对FPEM输出的不同尺度特征信息进行融合,提高各层特征之间的互补能力,以获得更全面的特征图信息。在此基础上,将S-ASPP和FFM的输出进行拼接和卷积操作,得到最终的分割结果。在PASCAL VOC 2012和Cityscapes数据集上的实验结果表明,该算法的平均交并比分别达到81.13%和73.39%,相较于基准算法DeepLabv3+分别提升了2.3和2.1个百分点,充分利用了骨干网络中的每层特征信息,提升了算法的分割精度,取得了较好的分割效果。 展开更多
关键词 语义分割 DeepLabv3+算法 空洞空间金字塔池化 特征金字塔增强模块 特征融合
在线阅读 下载PDF
并行路径与强注意力机制遥感图像建筑物分割 被引量:3
16
作者 杨坚华 张浩 花海洋 《光学精密工程》 EI CAS CSCD 北大核心 2023年第2期234-245,共12页
遥感图像建筑物分割广泛应用于城市规划及军事领域,是当前遥感领域的研究热点。针对遥感图像中建筑物之间尺度变化较大、建筑物遮挡、建筑物阴影与建筑物边缘相似所导致建筑物分割精度较低的问题,提出一种并行路径和强注意力机制的卷积... 遥感图像建筑物分割广泛应用于城市规划及军事领域,是当前遥感领域的研究热点。针对遥感图像中建筑物之间尺度变化较大、建筑物遮挡、建筑物阴影与建筑物边缘相似所导致建筑物分割精度较低的问题,提出一种并行路径和强注意力机制的卷积神经网络模型。该模型基于ResNet网络残差连接的思想,以ResNet为基础网络提高网络深度,并采用卷积下采样得到并行路径,提取建筑物的多尺度特征,以减少建筑物之间尺度变化的影响。然后加入强注意力机制,增强多尺度信息的融合效果,增加不同特征之间的区分度,抑制建筑物遮挡及建筑物阴影的影响。最后,在多尺度融合特征后加入金字塔空间池化模块,抑制分割结果中建筑物内部孔洞的出现,提高分割精度。在WHU以及Massachusetts Buildings公开数据集进行实验,分别从MIoU,Recall,Precision,F1-score 4个指标对分割结果进行量化比较,在Massachusetts Buildings数据集中MIoU达到72.84%,相较于ResUNet-a提升1.46%,能够有效提高遥感影像中建筑的分割精度。 展开更多
关键词 遥感图像 建筑物分割 并行路径 强注意力机制 金字塔空间池化
在线阅读 下载PDF
改进YOLOv3算法的遥感图像道路交叉口自动识别 被引量:7
17
作者 邵小美 张春亢 +3 位作者 韦永昱 张显云 周成宇 张忠豪 《航天返回与遥感》 CSCD 北大核心 2022年第5期123-132,共10页
针对道路交叉口目标较小、存在较多的植被遮挡、邻近地物颜色相近等问题,文章提出了一种改进的YOLOv3高分影像道路交叉口目标检测算法-CSC-YOLOv3。该方法首先使用CIOU损失函数改进原来YOLOv3的目标定位损失,降低目标漏检率;其次,通过在... 针对道路交叉口目标较小、存在较多的植被遮挡、邻近地物颜色相近等问题,文章提出了一种改进的YOLOv3高分影像道路交叉口目标检测算法-CSC-YOLOv3。该方法首先使用CIOU损失函数改进原来YOLOv3的目标定位损失,降低目标漏检率;其次,通过在YOLOv3的主干特征提取网络后添加空间金字塔池化模块,增大网络的有效感受野;最后,在YOLOv3网络的三个特征层结构以及两个上采样结构中引入注意力机制模块,提升网络检测精确度。在自制的道路交叉口数据集上对算法进行了实验验证,结果表明,CSC-YOLOv3算法的精确率、召回率、平均精确率和F1分数分别达到了86.05%、70.19%、83.71%、77%,比原始YOLOv3算法分别提高了6.54、8.55、11.74和8个百分点,虽然FPS降低了3帧/s,但是其检测性能的提升弥补了速度上的不足,有效提升了高分遥感影像对道路交叉口的检测效果。 展开更多
关键词 YOLOv3 道路交叉口 目标检测 空间金字塔池化 注意力机制 遥感应用
在线阅读 下载PDF
基于空间金字塔池化和深度卷积神经网络的作物害虫识别 被引量:53
18
作者 张博 张苗辉 陈运忠 《农业工程学报》 EI CAS CSCD 北大核心 2019年第19期209-215,共7页
为了减少因作物害虫姿态多样性和尺度多样性导致其识别精度相对较低的问题,该文将空间金字塔池化与改进的YOLOv3深度卷积神经网络相结合,提出了一种基于空间金字塔池化的深度卷积神经网络农作物害虫种类识别算法,首先对测试图像上的害... 为了减少因作物害虫姿态多样性和尺度多样性导致其识别精度相对较低的问题,该文将空间金字塔池化与改进的YOLOv3深度卷积神经网络相结合,提出了一种基于空间金字塔池化的深度卷积神经网络农作物害虫种类识别算法,首先对测试图像上的害虫进行检测定位,然后对检测定位出的害虫进行种类识别。通过改进YOLOv3的网络结构,采用上采样与卷积操作相结合的方法实现反卷积,使算法能够有效地检测到图片中体型较小的作物害虫样本;通过对采集到的实际场景下20类害虫进行识别测试,识别精度均值可达到88.07%。试验结果表明,本文提出的识别算法能够有效地对作物害虫进行检测和种类识别。 展开更多
关键词 图像识别 算法 害虫分类 深度卷积神经网络 空间金字塔池化 反卷积
在线阅读 下载PDF
改进DeepLabV3+网络的遥感影像道路综合提取方法 被引量:7
19
作者 任月娟 葛小三 《测绘通报》 CSCD 北大核心 2022年第6期55-61,共7页
遥感图像复杂场景道路提取过程受树木和建筑物阴影,以及荒地、空地等因素干扰较多。针对利用DeepLabV3+网络模型进行道路提取时存在的道路信息不完整和细节信息丢失的问题,本文提出了一种改进DeepLabV3+网络的遥感影像道路提取方法。该... 遥感图像复杂场景道路提取过程受树木和建筑物阴影,以及荒地、空地等因素干扰较多。针对利用DeepLabV3+网络模型进行道路提取时存在的道路信息不完整和细节信息丢失的问题,本文提出了一种改进DeepLabV3+网络的遥感影像道路提取方法。该方法以轻量级的MobileNetV2作为骨干网络进行特征提取,采用空间金字塔池化模块获得多尺度道路信息特征,从而减少道路遥感图像细节的损失,并提高网络模型的道路提取精度。在DeepGlobe数据集上进行道路提取试验的结果表明,该方法在提升准确率的基础上,有效降低了计算的复杂度;像素准确率和交并比分别达79.7%、64.3%,均优于DeepLabV3+网络及其他经典网络模型,表现出更优异的道路提取能力。 展开更多
关键词 道路提取 改进DeepLabV3+ MobileNetV2 空间金字塔池化
在线阅读 下载PDF
基于特征增强的轻量级无人机目标检测算法 被引量:1
20
作者 陈运雷 刘紫燕 +3 位作者 吴应雨 郑旭晖 张倩 杨模 《传感技术学报》 CAS CSCD 北大核心 2023年第6期901-910,共10页
针对无人机航拍图像特征少,小尺寸目标多以及检测任务实时性要求高等问题,以YOLOX算法为基础提出基于特征增强的轻量级无人机目标检测算法。首先,设计更加轻量的密集残差网络结构ResNet_G优化模型的主干网络,提升模型对图像特征的利用率... 针对无人机航拍图像特征少,小尺寸目标多以及检测任务实时性要求高等问题,以YOLOX算法为基础提出基于特征增强的轻量级无人机目标检测算法。首先,设计更加轻量的密集残差网络结构ResNet_G优化模型的主干网络,提升模型对图像特征的利用率,同时降低模型复杂度;其次,提出基于注意力机制的Atrous Spatial Pyramid Pooling(ASPP)模块作为特征增强模块,加强上下文信息关联度以减少丢失小目标特征;最后,使用Focal Loss函数与CDIoU Loss函数,改善负样本对模型权重的影响以提高对密集目标的识别能力。实验结果表明,与原网络相比,改进后算法在VisDrone2021数据集上平均检测精度提升5.08%,参数量减少0.25 M,推理时间降低2.21 ms。 展开更多
关键词 无人机小目标检测 轻量化 Ghost模块 Atrous Spatial pyramid pooling(aspp) CDIoU Loss Focal Loss
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部