Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of ...Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of signals and is widely used in different fields.Reverse dispersion entropy(RDE)proposed by us recently,as a nonlinear dynamic analysis method,has the advantages of fast computing speed and strong anti-noise ability,which is more suitable for measuring the complexity of signal than traditional permutation entropy(PE)and dispersion entropy(DE).Empirical wavelet transform(EWT),based on the theory of wavelet analysis,can decompose a complex non-stationary signal into a number of empirical wavelet functions(EWFs)with compact support set spectrum,which has better decomposition performance than empirical mode decomposition(EMD)and its improved algorithms.Considering the advantages of RDE and EWT,on the one hand,we introduce EWT into the field of underwater acoustic signal processing and fault diagnosis to improve the signal decomposition accuracy;on the other hand,we use RDE as the features of EWFs to improve the signal separability and stability.Finally,we propose a novel signal feature extraction technology based on EWT and RDE in this paper.Experimental results show that the proposed feature extraction technology can effectively extract the complexity features of actual signals.Moreover,it also has higher distinguishing ability for different types of signals than five latest feature extraction technologies.展开更多
针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirica...针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirical wavelet transform,ESEWT)相结合的齿轮振动信号降噪方法,即FBSE-ESEWT。首先,将采集到的齿轮振动信号利用FBSE技术获得其频谱,以替代传统的傅里叶谱,接着凭借能量尺度空间划分法对获取的FBSE频谱进行自适应分割和筛选,以精确定位有效频带的边界点。随后通过构建小波滤波器组得到信号分量并进行重构,以减小噪声和冗余信息干扰;然后,为捕捉到更全面的特征信息将处理后的信号进行广义S变换得到时频图,输入2D卷积神经网络进行故障诊断验证算法可行性。通过对Simulink仿真信号和实际采集信号进行实验,结果表明,相对于原始经验小波变换(EWT)、经验模态分解(EMD)等方法,FBSE-ESEWT具有更好的降噪效果,信噪比提高了13.96 dB,诊断准确率高达98.03%。展开更多
在公路隧道爆破中,为了获得准确、真实的振动特征,基于鲁棒性局部均值分解(robust local mean decomposition,RLMD)和经验小波变换(empirical wavelet transform,EWT),建立了一种RLMD-EWT联合降噪方法。首先,将实测信号进行RLMD分解,得...在公路隧道爆破中,为了获得准确、真实的振动特征,基于鲁棒性局部均值分解(robust local mean decomposition,RLMD)和经验小波变换(empirical wavelet transform,EWT),建立了一种RLMD-EWT联合降噪方法。首先,将实测信号进行RLMD分解,得到若干乘积函数(product functions,PF)分量,结合相关系数和样本熵(sample entropy,SE)对PF分量进行分类,对含噪分量进行EWT分解,进而实现降噪目标。通过降噪效果对比,RLMD-EWT联合降噪方法具备可行性,相较LMD、EWT、RLMD和LMD-WT方法,表现出更优的降噪性能、更高的降噪效率和准确度。结合HHT频谱图,RLMD-EWT方法对于30~50 Hz、250 Hz以上2个频段的噪声可实现有效滤除,具备良好的信号适用度。展开更多
分布式光伏在交流侧公共连接点(point of common coupling,PCC)汇流的功率有较大的随机性与波动性,影响电网的稳定运行。为此,提出了基于经验小波变换(empirical wavelet transform,EWT)的分布式光储PCC功率自适应平抑方法。首先,针对...分布式光伏在交流侧公共连接点(point of common coupling,PCC)汇流的功率有较大的随机性与波动性,影响电网的稳定运行。为此,提出了基于经验小波变换(empirical wavelet transform,EWT)的分布式光储PCC功率自适应平抑方法。首先,针对混合储能(hybrid energy storage system,HESS)与分布式光伏接入PCC的典型场景,在分析EWT自适应处理波形的特点后,结合功率波动率与储能元件的响应特性,对PCC的光伏原始汇流功率进行EWT分解与优化修正,实现HESS的功率初级分配。之后为避免HESS的荷电状态(state of charge,SOC)频繁越限,提出了一种主动功率补偿的SOC控制策略,通过主动改变储能的参考信号使其SOC在安全范围内工作。结合实际数据的仿真验证表明,该平抑方法能够自适应地实现光伏出力的合理分解与功率分配,在延长储能使用寿命的同时有效满足并网功率波动的要求,为平抑光伏输出功率波动提供了新思路。展开更多
针对滚动轴承早期故障声发射信号受复杂传递路径和噪声的干扰,声发射信号信噪比较低,导致轴承故障特征难以提取的问题,提出了改进小波阈值函数-ACEWT的轴承故障特征提取方法。由于声发射信号呈冲击性与快速衰减的特点,构建一种衰减正弦...针对滚动轴承早期故障声发射信号受复杂传递路径和噪声的干扰,声发射信号信噪比较低,导致轴承故障特征难以提取的问题,提出了改进小波阈值函数-ACEWT的轴承故障特征提取方法。由于声发射信号呈冲击性与快速衰减的特点,构建一种衰减正弦型与指数型的小波阈值函数对低信噪比的声发射信号进行降噪。研究自相关运算与经验小波变换结合的方法(autocorrelation and empirical wavelet transform,ACEWT),用于滚动轴承故障声发射信号特征提取,解决了在低信噪比下经验小波变换对轴承故障特征提取的不足;引入经验小波能量比-熵指标,选取最优经验小波系数。通过与经验小波变换、改进小波阈值函数-EWT和MCKD-EWT方法进行对比研究,并试验验证。仿真和试验结果表明,所提方法明显优于经验小波变换、改进小波阈值函数-EWT和MCKD-EWT方法,可准确提取轴承故障声发射信号的频率特征。展开更多
基金the supported by National Natural Science Foundation of China(No.61871318 and 11574250)Scientific Research Plan Projects of Shaanxi Education Department(No.19JK0568).
文摘Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of signals and is widely used in different fields.Reverse dispersion entropy(RDE)proposed by us recently,as a nonlinear dynamic analysis method,has the advantages of fast computing speed and strong anti-noise ability,which is more suitable for measuring the complexity of signal than traditional permutation entropy(PE)and dispersion entropy(DE).Empirical wavelet transform(EWT),based on the theory of wavelet analysis,can decompose a complex non-stationary signal into a number of empirical wavelet functions(EWFs)with compact support set spectrum,which has better decomposition performance than empirical mode decomposition(EMD)and its improved algorithms.Considering the advantages of RDE and EWT,on the one hand,we introduce EWT into the field of underwater acoustic signal processing and fault diagnosis to improve the signal decomposition accuracy;on the other hand,we use RDE as the features of EWFs to improve the signal separability and stability.Finally,we propose a novel signal feature extraction technology based on EWT and RDE in this paper.Experimental results show that the proposed feature extraction technology can effectively extract the complexity features of actual signals.Moreover,it also has higher distinguishing ability for different types of signals than five latest feature extraction technologies.
文摘针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirical wavelet transform,ESEWT)相结合的齿轮振动信号降噪方法,即FBSE-ESEWT。首先,将采集到的齿轮振动信号利用FBSE技术获得其频谱,以替代传统的傅里叶谱,接着凭借能量尺度空间划分法对获取的FBSE频谱进行自适应分割和筛选,以精确定位有效频带的边界点。随后通过构建小波滤波器组得到信号分量并进行重构,以减小噪声和冗余信息干扰;然后,为捕捉到更全面的特征信息将处理后的信号进行广义S变换得到时频图,输入2D卷积神经网络进行故障诊断验证算法可行性。通过对Simulink仿真信号和实际采集信号进行实验,结果表明,相对于原始经验小波变换(EWT)、经验模态分解(EMD)等方法,FBSE-ESEWT具有更好的降噪效果,信噪比提高了13.96 dB,诊断准确率高达98.03%。
文摘在公路隧道爆破中,为了获得准确、真实的振动特征,基于鲁棒性局部均值分解(robust local mean decomposition,RLMD)和经验小波变换(empirical wavelet transform,EWT),建立了一种RLMD-EWT联合降噪方法。首先,将实测信号进行RLMD分解,得到若干乘积函数(product functions,PF)分量,结合相关系数和样本熵(sample entropy,SE)对PF分量进行分类,对含噪分量进行EWT分解,进而实现降噪目标。通过降噪效果对比,RLMD-EWT联合降噪方法具备可行性,相较LMD、EWT、RLMD和LMD-WT方法,表现出更优的降噪性能、更高的降噪效率和准确度。结合HHT频谱图,RLMD-EWT方法对于30~50 Hz、250 Hz以上2个频段的噪声可实现有效滤除,具备良好的信号适用度。
文摘分布式光伏在交流侧公共连接点(point of common coupling,PCC)汇流的功率有较大的随机性与波动性,影响电网的稳定运行。为此,提出了基于经验小波变换(empirical wavelet transform,EWT)的分布式光储PCC功率自适应平抑方法。首先,针对混合储能(hybrid energy storage system,HESS)与分布式光伏接入PCC的典型场景,在分析EWT自适应处理波形的特点后,结合功率波动率与储能元件的响应特性,对PCC的光伏原始汇流功率进行EWT分解与优化修正,实现HESS的功率初级分配。之后为避免HESS的荷电状态(state of charge,SOC)频繁越限,提出了一种主动功率补偿的SOC控制策略,通过主动改变储能的参考信号使其SOC在安全范围内工作。结合实际数据的仿真验证表明,该平抑方法能够自适应地实现光伏出力的合理分解与功率分配,在延长储能使用寿命的同时有效满足并网功率波动的要求,为平抑光伏输出功率波动提供了新思路。
文摘针对滚动轴承早期故障声发射信号受复杂传递路径和噪声的干扰,声发射信号信噪比较低,导致轴承故障特征难以提取的问题,提出了改进小波阈值函数-ACEWT的轴承故障特征提取方法。由于声发射信号呈冲击性与快速衰减的特点,构建一种衰减正弦型与指数型的小波阈值函数对低信噪比的声发射信号进行降噪。研究自相关运算与经验小波变换结合的方法(autocorrelation and empirical wavelet transform,ACEWT),用于滚动轴承故障声发射信号特征提取,解决了在低信噪比下经验小波变换对轴承故障特征提取的不足;引入经验小波能量比-熵指标,选取最优经验小波系数。通过与经验小波变换、改进小波阈值函数-EWT和MCKD-EWT方法进行对比研究,并试验验证。仿真和试验结果表明,所提方法明显优于经验小波变换、改进小波阈值函数-EWT和MCKD-EWT方法,可准确提取轴承故障声发射信号的频率特征。