期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-satellite observation integrated scheduling method oriented to emergency tasks and common tasks 被引量:23
1
作者 Guohua Wu Manhao Ma +1 位作者 Jianghan Zhu Dishan Qiu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期723-733,共11页
Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance... Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance and urgency(e.g.,observation tasks orienting to the earthquake area and military conflict area),have not been taken into account yet.Therefore,it is crucial to investigate the satellite integrated scheduling methods,which focus on meeting the requirements of emergency tasks while maximizing the profit of common tasks.Firstly,a pretreatment approach is proposed,which eliminates conflicts among emergency tasks and allocates all tasks with a potential time-window to related orbits of satellites.Secondly,a mathematical model and an acyclic directed graph model are constructed.Thirdly,a hybrid ant colony optimization method mixed with iteration local search(ACO-ILS) is established to solve the problem.Moreover,to guarantee all solutions satisfying the emergency task requirement constraints,a constraint repair method is presented.Extensive experimental simulations show that the proposed integrated scheduling method is superior to two-phased scheduling methods,the performance of ACO-ILS is greatly improved in both evolution speed and solution quality by iteration local search,and ACO-ILS outperforms both genetic algorithm and simulated annealing algorithm. 展开更多
关键词 satellite scheduling emergency task ant colony optimization(ACO) iteration local search(ILS) acyclic directed graph model
在线阅读 下载PDF
Real-time online rescheduling for multiple agile satellites with emergent tasks 被引量:3
2
作者 WEN Jun LIU Xiaolu HE Lei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1407-1420,共14页
The emergent task is a kind of uncertain event that satellite systems often encounter in the application process.In this paper,the multi-satellite distributed coordinating and scheduling problem considering emergent t... The emergent task is a kind of uncertain event that satellite systems often encounter in the application process.In this paper,the multi-satellite distributed coordinating and scheduling problem considering emergent tasks is studied.Due to the limitation of onboard computational resources and time,common online onboard rescheduling methods for such problems usually adopt simple greedy methods,sacrificing the solution quality to deliver timely solutions.To better solve the problem,a new multi-satellite onboard scheduling and coordinating framework based on multi-solution integration is proposed.This method uses high computational power on the ground and generates multiple solutions,changing the complex onboard rescheduling problem to a solution selection problem.With this method,it is possible that little time is used to generate a solution that is as good as the solutions on the ground.We further propose several multi-satellite coordination methods based on the multi-agent Markov decision process(MMDP)and mixed-integer programming(MIP).These methods enable the satellite to make independent decisions and produce high-quality solutions.Compared with the traditional centralized scheduling method,the proposed distributed method reduces the cost of satellite communication and increases the response speed for emergent tasks.Extensive experiments show that the proposed multi-solution integration framework and the distributed coordinating strategies are efficient and effective for onboard scheduling considering emergent tasks. 展开更多
关键词 agile satellite scheduling emergent task onboard rescheduling distributed coordinating multi-solution integration
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部