Emergency response for ship oil-spill accident should be regarded as a dynamic complex system consisting of human,machine and organization.Recently the reliability evaluation and optimization of machine and organizati...Emergency response for ship oil-spill accident should be regarded as a dynamic complex system consisting of human,machine and organization.Recently the reliability evaluation and optimization of machine and organization in emergency response attached much attention,but the human reliability was ignored in the research.This igno-rance will negatively affect the reliability of the whole emergency response system.Ship oil-spill accident not only leads to heave losses of money and human lives,but also produces serious environmental pollutions.Consequently more and more international maritime institutions have attached highly importance to it.In an attempt to improve the reliability of emergency response for ship oil-spill accident,a human error analysis model was developed considering features of ship oil-spill accident.The model was developed on a theoretical basis with reference to cognitive psychology and HRA.It analyzed three types of human errors including cognitive error,decisive error and act error and four types factors causing human error including external environment,organization,operator own factor and human-machine interface.Finally an example of ineffective oil-ship accident emergency re-sponse has been analyzed with CREAM(Cognitive reliability and error analysis method),a classical second genera-tion HRA methods,in order to test the feasibility and efficiency of HRA model.展开更多
[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infra...[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infrastructure such as pipe networks for urban stormwater management is not enough to deal with urban rainstorm flood disasters under extreme rainfall events.The integration of green,grey and blue systems(GGB-integrated system)is gradually gaining recognition in the field of global flood prevention.It is necessary to further clarify the connotation,technical and engineering implementation strategies of the GGB-integrated system,to provide support for the resilient city construction.[Methods]Through literature retrieval and analysis,the relevant research and progress related to the layout optimization and joint scheduling optimization of the GGBintegrated system were systematically reviewed.In response to existing limitations and future engineering application requirements,key supporting technologies including the utilization of overground emergency storage spaces,safety protection of underground important infrastructure and multi-departmental collaboration,were proposed.A layout optimization framework and a joint scheduling framework for the GGB-integrated system were also developed.[Results]Current research on layout optimization predominantly focuses on the integration of green system and grey system,with relatively fewer studies incorporating blue system infrastructure into the optimization process.Moreover,these studies tend to be on a smaller scale with simpler scenarios,which do not fully capture the complexity of real-world systems.Additionally,optimization objective tend to prioritize environmental and economic goals,while social and ecological factors are less frequently considered.Current research on joint scheduling optimization is often limited to small-scale plots,with insufficient attention paid to the entire system.There is a deficiency in method for real-time,automated determination of optimal control strategies for combinations of multiple system facilities based on actual rainfall-runoff processes.Additionally,the application of emergency facilities during extreme conditions is not sufficiently addressed.Furthermore,both layout optimization and joint scheduling optimization lack consideration of the mute feed effect of flood and waterlogging in urban,watershed and regional scales.[Conclusion]Future research needs to improve the theoretical framework for layout optimization and joint scheduling optimization of GGB-integrated system.Through the comprehensive application of the Internet of things,artificial intelligence,coupling model development,multi-scale analysis,multi-scenario simulation,and the establishment of multi-departmental collaboration mechanisms,it can enhance the flood resilience of urban areas in response to rainfall events of varying intensities,particularly extreme rainfall events.展开更多
文摘Emergency response for ship oil-spill accident should be regarded as a dynamic complex system consisting of human,machine and organization.Recently the reliability evaluation and optimization of machine and organization in emergency response attached much attention,but the human reliability was ignored in the research.This igno-rance will negatively affect the reliability of the whole emergency response system.Ship oil-spill accident not only leads to heave losses of money and human lives,but also produces serious environmental pollutions.Consequently more and more international maritime institutions have attached highly importance to it.In an attempt to improve the reliability of emergency response for ship oil-spill accident,a human error analysis model was developed considering features of ship oil-spill accident.The model was developed on a theoretical basis with reference to cognitive psychology and HRA.It analyzed three types of human errors including cognitive error,decisive error and act error and four types factors causing human error including external environment,organization,operator own factor and human-machine interface.Finally an example of ineffective oil-ship accident emergency re-sponse has been analyzed with CREAM(Cognitive reliability and error analysis method),a classical second genera-tion HRA methods,in order to test the feasibility and efficiency of HRA model.
文摘[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infrastructure such as pipe networks for urban stormwater management is not enough to deal with urban rainstorm flood disasters under extreme rainfall events.The integration of green,grey and blue systems(GGB-integrated system)is gradually gaining recognition in the field of global flood prevention.It is necessary to further clarify the connotation,technical and engineering implementation strategies of the GGB-integrated system,to provide support for the resilient city construction.[Methods]Through literature retrieval and analysis,the relevant research and progress related to the layout optimization and joint scheduling optimization of the GGBintegrated system were systematically reviewed.In response to existing limitations and future engineering application requirements,key supporting technologies including the utilization of overground emergency storage spaces,safety protection of underground important infrastructure and multi-departmental collaboration,were proposed.A layout optimization framework and a joint scheduling framework for the GGB-integrated system were also developed.[Results]Current research on layout optimization predominantly focuses on the integration of green system and grey system,with relatively fewer studies incorporating blue system infrastructure into the optimization process.Moreover,these studies tend to be on a smaller scale with simpler scenarios,which do not fully capture the complexity of real-world systems.Additionally,optimization objective tend to prioritize environmental and economic goals,while social and ecological factors are less frequently considered.Current research on joint scheduling optimization is often limited to small-scale plots,with insufficient attention paid to the entire system.There is a deficiency in method for real-time,automated determination of optimal control strategies for combinations of multiple system facilities based on actual rainfall-runoff processes.Additionally,the application of emergency facilities during extreme conditions is not sufficiently addressed.Furthermore,both layout optimization and joint scheduling optimization lack consideration of the mute feed effect of flood and waterlogging in urban,watershed and regional scales.[Conclusion]Future research needs to improve the theoretical framework for layout optimization and joint scheduling optimization of GGB-integrated system.Through the comprehensive application of the Internet of things,artificial intelligence,coupling model development,multi-scale analysis,multi-scenario simulation,and the establishment of multi-departmental collaboration mechanisms,it can enhance the flood resilience of urban areas in response to rainfall events of varying intensities,particularly extreme rainfall events.