A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2...A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.展开更多
To quantify the energy consumption in the process of production, transportation and processing of energy carriers, the life cycle of building energy used can be divided into two phases: on-site phase and embodied pha...To quantify the energy consumption in the process of production, transportation and processing of energy carriers, the life cycle of building energy used can be divided into two phases: on-site phase and embodied phase. As for the embodied phase, with the data in existing statistic yearbook, the consumption items of energy production and transportation were investigated. And based on the life cycle theory, an embodied coefficient of energy carriers was proposed to quantify the embodied energy consumption. Moreover, a calculation method for the embodied coefficient of energy carriers was deduced using Leontief inverse matrix based on the existing data sources. With relevant data of 2005-2007 in China, the embodied coefficients in 2005-2007 were obtained, in which the values for natural gas and thermal power are around 1.3 and 3. l, respectively; while they are 1.03-1.08 for other selected energy carriers. In addition, it is also found that the consumption in the production and processing accounts for more than 75%.展开更多
基金Project(2012GK2025)supported by Science-Technology Plan Foundation of Hunan Province,ChinaProject(2013zzts039)supported by the Fundamental Research Funds for Central South University,China
文摘A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.
基金Project(CDJZR10210009) supported by Central College General Fund for Natural Science of Chongqing City,China
文摘To quantify the energy consumption in the process of production, transportation and processing of energy carriers, the life cycle of building energy used can be divided into two phases: on-site phase and embodied phase. As for the embodied phase, with the data in existing statistic yearbook, the consumption items of energy production and transportation were investigated. And based on the life cycle theory, an embodied coefficient of energy carriers was proposed to quantify the embodied energy consumption. Moreover, a calculation method for the embodied coefficient of energy carriers was deduced using Leontief inverse matrix based on the existing data sources. With relevant data of 2005-2007 in China, the embodied coefficients in 2005-2007 were obtained, in which the values for natural gas and thermal power are around 1.3 and 3. l, respectively; while they are 1.03-1.08 for other selected energy carriers. In addition, it is also found that the consumption in the production and processing accounts for more than 75%.