期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进麻雀搜索算法的机械臂多目标轨迹优化方法
1
作者 李玲 侯玉龙 +2 位作者 李瑶 罗丹 解妙霞 《工程设计学报》 北大核心 2025年第5期664-674,共11页
针对传统机械臂在执行任务时存在工作效率低,以及易产生冲击和振动而造成机械疲劳损坏等问题,提出了一种基于改进麻雀搜索算法(sparrow search algorithm,SSA)的机械臂多目标轨迹优化方法。以六自由度AR4机械臂为研究对象,采用分段式3-... 针对传统机械臂在执行任务时存在工作效率低,以及易产生冲击和振动而造成机械疲劳损坏等问题,提出了一种基于改进麻雀搜索算法(sparrow search algorithm,SSA)的机械臂多目标轨迹优化方法。以六自由度AR4机械臂为研究对象,采用分段式3-5-3多项式插值法构建其运动学模型。然后,基于融合Tent-Logistic混沌映射、改良精英反向学习策略及柯西-高斯变异策略的新型改进SSA(newly improved SSA,NISSA),对机械臂各关节的运行时间和冲击进行多目标协同优化。最后,与其他优化算法进行对比实验,以验证NISSA的有效性。实验结果表明,应用NISSA优化后,机械臂的运行时间缩短了17.8%,运行中产生的冲击减小了12.9%。研究结果为机械臂的轨迹优化提供了高效的方法。 展开更多
关键词 机械臂 轨迹优化 麻雀搜索算法 Tent-Logistic混沌映射 精英反向学习策略
在线阅读 下载PDF
基于CEEMDAN-PE-WPD和多目标优化的超短期风电功率预测方法 被引量:14
2
作者 常雨芳 杨子潇 +2 位作者 潘风 唐杨 黄文聪 《电网技术》 EI CSCD 北大核心 2023年第12期5015-5025,共11页
为了提高风电功率预测的精度,提出了一种基于总体平均经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)、小波包分解(wavelet packet decomposition,WPD)... 为了提高风电功率预测的精度,提出了一种基于总体平均经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)、小波包分解(wavelet packet decomposition,WPD)和多目标优化的超短期风电功率预测方法。首先,利用CEEMDAN、PE和WPD构成的信号处理方法降低原始风电信号的随机性和波动性;然后,将分解后的子分量输入到长短期记忆(long short-term memory,LSTM)神经网络,并且利用精英T分布麻雀优化算法(elite t-distribution sparrow optimization algorithm,ETSSA)优化LSTM的隐藏层单元数,提升LSTM网络的预测性能;最后,建立多目标优化损失函数,将准确率、稳定度和合格率3个优化目标同时加入到损失函数中,综合提升模型的预测性能。对内蒙古某地区风力发电场的实测数据进行实验分析结果表明,与其他经典预测方法相比,所提方法提升风电功率预测性能有显著效果,并且在不同季节风况下预测效果良好。 展开更多
关键词 超短期风电功率预测 总体平均经验模态分解 排列熵 小波包分解 长短期记忆神经 精英T分布麻雀优化算法 多目标优化
在线阅读 下载PDF
基于SSO的铀尾矿库无线传感器网络定位算法 被引量:3
3
作者 余修武 彭威 +1 位作者 余员琴 刘永 《中国安全科学学报》 CAS CSCD 北大核心 2023年第4期84-90,共7页
为提高铀尾矿库无线传感器网络(WSN)定位算法的定位精度和收敛速度,利用优化的麻雀搜索算法(SSA)改进基于信号强度指示(RSSI)的定位算法。首先,引入混沌映射和精英方向学习初始化麻雀种群,丰富种群多样性,提高算法的全局寻优能力;其次,... 为提高铀尾矿库无线传感器网络(WSN)定位算法的定位精度和收敛速度,利用优化的麻雀搜索算法(SSA)改进基于信号强度指示(RSSI)的定位算法。首先,引入混沌映射和精英方向学习初始化麻雀种群,丰富种群多样性,提高算法的全局寻优能力;其次,采用莱维飞行策略改进搜索者的位置更新方式,避免陷入局部最优;然后,采用优化的SSA代替最小二乘法来定位未知节点,并将定位算法应用于铀尾矿库放射性核素污染监测定位;最后,在不同的锚节点数、通信半径以及噪声标准差条件下,对比麻雀搜索优化定位算法(SSOLA)与加权质心定位算法(WCLA)、接收信号强度指示差定位算法(RSSID)、麻雀搜索定位算法(SSA)、粒子群定位算法(PSO)以及樽海鞘群定位算法(SAP)的性能。结果表明:SSOLA与其余5种算法相比定位误差平均下降41.9%、45.2%、26.8%、39.9%和36.9%,定位精度更高,收敛速度更快。 展开更多
关键词 麻雀搜索优化(SSO) 铀尾矿库 无线传感器网络(WSN) 定位算法 混沌映射 精英反向学习 莱维飞行策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部