Neutron-induced gamma-ray imaging is a spectroscopic technique that uses characteristic gamma rays to infer the elemental distribution of an object.Currently,this technique requires the use of large facilities to supp...Neutron-induced gamma-ray imaging is a spectroscopic technique that uses characteristic gamma rays to infer the elemental distribution of an object.Currently,this technique requires the use of large facilities to supply a high neutron flux and a time-consuming detection procedure involving direct collimating measurements.In this study,a new method based on low neutron flux was proposed.A single-pixel gamma-ray detector combined with random pattern gamma-ray masks was used to measure the characteristic gamma rays emitted from the sample.Images of the elemental distribution in the sample,comprising 30×30 pixels,were reconstructed using the maximum-likelihood expectation-maximization algorithm.The results demonstrate that the elemental imaging of the sample can be accurately determined using this method.The proposed approach,which eliminates the need for high neutron flux and scanning measurements,can be used for in-field imaging applications.展开更多
Doped elements in alloys significantly impact their performance.Conventional methods usually sputter the surface material of the sample,or their performance is limited to the surface of alloys owing to their poor pene...Doped elements in alloys significantly impact their performance.Conventional methods usually sputter the surface material of the sample,or their performance is limited to the surface of alloys owing to their poor penetration ability.The X-ray K-edge subtraction(KES)method exhibits great potential for the nondestructive in situ detection of element contents in alloys.However,the signal of doped elements usually deteriorates because of the strong absorption of the principal component and scattering of crystal grains.This in turn prevents the extensive application of X-ray KES imaging to alloys.In this study,methods were developed to calibrate the linearity between the grayscale of the KES image and element content.The methods were aimed at the sensitive analysis of elements in alloys.Furthermore,experiments with phantoms and alloys demonstrated that,after elaborate calibration,X-ray KES imaging is capable of nondestructive and sensitive analysis of doped elements in alloys.展开更多
We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images ar...We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images are subtracted to obtain the target element: one is at the absorption edge of the target element and the other is near the absorption edge. The x-ray exposure required by this method is expected to be significantly lower than that of conventional absorption-based x-ray elemental imaging methods. Numerical calculations confirm the advantages of this highly efficient imaging method.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12105143 and 11975121)the China Postdoctoral Science Foundation(No.2023M741453)+1 种基金the Engineering Research Center of Nuclear Technology Application(No.HJSJYB2020-1)the Key Laboratory of Ionizing Radiation Metering and Safety Evaluation for Jiangsu Province Market Regulation,and the Jiangsu Province Excellent Postdoctoral Program(No.JB23057).
文摘Neutron-induced gamma-ray imaging is a spectroscopic technique that uses characteristic gamma rays to infer the elemental distribution of an object.Currently,this technique requires the use of large facilities to supply a high neutron flux and a time-consuming detection procedure involving direct collimating measurements.In this study,a new method based on low neutron flux was proposed.A single-pixel gamma-ray detector combined with random pattern gamma-ray masks was used to measure the characteristic gamma rays emitted from the sample.Images of the elemental distribution in the sample,comprising 30×30 pixels,were reconstructed using the maximum-likelihood expectation-maximization algorithm.The results demonstrate that the elemental imaging of the sample can be accurately determined using this method.The proposed approach,which eliminates the need for high neutron flux and scanning measurements,can be used for in-field imaging applications.
基金supported by the National Key Research and Development Program of China(Nos.2017YFA0403801,2017YFA0206004,2018YFC1200204)the National Natural Science Foundation of China(NSFC)(Nos.81430087,11775297,U1932205).
文摘Doped elements in alloys significantly impact their performance.Conventional methods usually sputter the surface material of the sample,or their performance is limited to the surface of alloys owing to their poor penetration ability.The X-ray K-edge subtraction(KES)method exhibits great potential for the nondestructive in situ detection of element contents in alloys.However,the signal of doped elements usually deteriorates because of the strong absorption of the principal component and scattering of crystal grains.This in turn prevents the extensive application of X-ray KES imaging to alloys.In this study,methods were developed to calibrate the linearity between the grayscale of the KES image and element content.The methods were aimed at the sensitive analysis of elements in alloys.Furthermore,experiments with phantoms and alloys demonstrated that,after elaborate calibration,X-ray KES imaging is capable of nondestructive and sensitive analysis of doped elements in alloys.
基金supported by the National Basic Research Program of China(Grant No.2012CB825801)the National Natural Science Foundation of China(Grant Nos.11505188,and 11305173)
文摘We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images are subtracted to obtain the target element: one is at the absorption edge of the target element and the other is near the absorption edge. The x-ray exposure required by this method is expected to be significantly lower than that of conventional absorption-based x-ray elemental imaging methods. Numerical calculations confirm the advantages of this highly efficient imaging method.