Through tailoring interfacial chemistry,electrolyte engineering is a facile yet effective strategy for highperformance lithium(Li)metal batteries,where the solvation structure is critical for interfacial chemistry.Her...Through tailoring interfacial chemistry,electrolyte engineering is a facile yet effective strategy for highperformance lithium(Li)metal batteries,where the solvation structure is critical for interfacial chemistry.Herein,the effect of electrostatic interaction on regulating an anion-rich solvation is firstly proposed.The moderate electrostatic interaction between anion and solvent promotes anion to enter the solvation sheath,inducing stable solid electrolyte interphase with fast Li+transport kinetics on the anode.This asdesigned electrolyte exhibits excellent compatibility with Li metal anode(a Li deposition/stripping Coulombic efficiency of 99.3%)and high-voltage LiCoO_(2) cathode.Consequently,the 50μm-thin Li||high-loading LiCoO_(2) cells achieve significantly improved cycling performance under stringent conditions of high voltage over 4.5 V,lean electrolyte,and wide temperature range(-20 to 60℃).This work inspires a groundbreaking strategy to manipulate the solvation structure through regulating the interactions of solvent and anion for highperformance Li metal batteries.展开更多
The light weight,good bending resistance and low production cost make flexible perovskite solar cells(PSCs)good candidates in wearable electronics,portable charger,remote power,and flying objects.High power conversion...The light weight,good bending resistance and low production cost make flexible perovskite solar cells(PSCs)good candidates in wearable electronics,portable charger,remote power,and flying objects.High power conversion efficiency(PCE)plays a crucial role on obtaining the high mass specific power of flexible devices.However,the performance for flexible PSCs is still having a large room to be improved.Here,we added the 2-amino-5-cyanopyridine(ACP)molecule with a polar electron density distribution in the perovskite precursor solution to improve the performance of flexible PSCs.The cyano groups with electron-withdrawing ability are expected to passivate positively charged point defects,while amines with electron donating ability are expected to passivate negatively charged point defects in perovskite films.Thanks to the effective passivation of defects at the grain boundary and surface of perovskite films,the PCE of flexible PSCs is obviously increased from 16.9%to 18.0%.These results provide a universal approach to improve performance of flexible PSCs by healing the defects in perovskite films through electrostatic interactions.展开更多
The electrostatic interaction of a charged spherical particle in the vicinity of an orifice plane has been investigated in this paper. The particle can creep along the axis of the orifice and is immersed in a bulk ele...The electrostatic interaction of a charged spherical particle in the vicinity of an orifice plane has been investigated in this paper. The particle can creep along the axis of the orifice and is immersed in a bulk electrolyte. By solving the Poisson-Boltzmann problem, we have obtained the effective electrostatic interaction for several values of reduced orifice radius h, including the cases of h ~ 1, h = i and h 〈 1. Two kinds of boundary conditions of the orifice plane are considered. One is the constant potential model corresponding to a conducting plane, the other is the constant charge model. In the constant potential model, there is an electrostatic attraction between the particle and the orifice plane when they get close to each other, while there is a pure electrostatic repulsion in the constant charge model. The interactions in both boundary models are sensitive to the parameters of the reduced orifice radius, the reduced particle-rifice distance, surface charge densities of the particle and orifice plane, and the reduced Debye screen constant corresponding to the salt-ion concentration and ion valence.展开更多
We present the solutions of the interaction energy for a colloid system with a charged rod-like macromolecule immersed in a bulk electrolyte and moving along the axis of a circular orifice or disk (orifice/disk). Th...We present the solutions of the interaction energy for a colloid system with a charged rod-like macromolecule immersed in a bulk electrolyte and moving along the axis of a circular orifice or disk (orifice/disk). The calculation requires a numerical computation of the surface charge profiles, which result from a constant surface potential on the macromolecule and the orifice/disk. In the calculation, remarkable divergences of the surface charge emerge on the edges of the macromolecule and the orifice/disk, which are well-known edge effects. The anisotropic distribution of the surface charge (effective dipole) results in an attraction between these two charged objects. This attraction is enhanced with the increase of the screening length of the system for both the orifice and the disk systems. However, the sizes of the orifice and the disk reduce to different effects on the interaction energy.展开更多
Soy protein isolate(SPI)is a commercial protein with balanced amino acids,while the poor solubility impedes its use in traditional foods.To overcome the problem,the complex coacervation of SPI/Flammulina velutipes pol...Soy protein isolate(SPI)is a commercial protein with balanced amino acids,while the poor solubility impedes its use in traditional foods.To overcome the problem,the complex coacervation of SPI/Flammulina velutipes polysaccharide(FVP)were investigated.Initial results revealed that the suitable amounts of FVP contributed to reducing the turbidity of SPI solution.Under electrostatic interaction,the formation of SPI/FVP coacervates were spontaneous and went through a nucleation and growth process.Low salt concentration(C_(NaCl)=10,50 mmol/L)led to an increase in the critical pH values(pHc,pHφ1)while the critical pH values decreased when C_(NaCl)≥100 mmol/L.The concentration of NaCl ions increased the content ofα-helix.With the increase of FVP,the critical pH values decreased and the content ofβ-sheet increased through electrostatic interaction.At SPI/FVP ratio of 10:1 and 15:1,the complex coacervation of SPI/FVP were saturated,and the coacervates had the same storage modulus value.SPI/FVP coacervates exhibited solid-like properties and presented the strongest storage modulus at C_(NaCl)=50 mmol/L.The optimal pH,SPI/FVP ratio and NaCl concentration of complex coacervation were collected,and the coacervates demonstrated a valuable application potential to protect and deliver bioactives and food ingredients.展开更多
The development of polymer-based solid-state batteries is severely limited by the low ionic conductivity of solid polymer electrolyte and the instable interface between polymer electrolyte and Li-metal anode.In this w...The development of polymer-based solid-state batteries is severely limited by the low ionic conductivity of solid polymer electrolyte and the instable interface between polymer electrolyte and Li-metal anode.In this work,lithium iodide(LiI)as a bifunctional additive was introduced into the poly(ethylene oxide)(PEO)-based electrolyte to improve the ionic conductivity and to construct a stable interphase at the Li/PEO interface.I-anions offer a strong electrostatic interaction with hydrogen atoms on PEO chains(HPEO)and forming massive I–H bonds that cross-link PEO chains,decrease crystallinity of PEO,and thus improve Li~+interchain transport.In addition,LiI participates in the formation of an inorganic-rich interphase layer,which decreases the energy barrier of Li+transport across the interface and thus inhibits the growth of lithium dendrites.As a result,the composite PEO electrolyte with 2 wt%LiI(PEO-2 LiI)presents a very high ionic conductivity of 2.1×10^(-4) S cm-1 and a critical current density of 2.0 m A cm^(-2) at 45°C.Li symmetric cell with this PEO-2 LiI electrolyte exhibits a long-term cyclability over 600 h at 0.2 m A cm^(-2).Furthermore,solid-state LiFePO_(4) and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) batteries with the PEO-2 LiI electrolyte show an impressive electrochemical performance with outstanding cycling stability and rate capability at 45°C.展开更多
The stability against various environmental stresses of the curcumin-loaded secondary and tertiary emulsions that was emulsified by whey protein isolate(WPI)and coated by chitosan(CHI),carboxymethyl konjac glucomannan...The stability against various environmental stresses of the curcumin-loaded secondary and tertiary emulsions that was emulsified by whey protein isolate(WPI)and coated by chitosan(CHI),carboxymethyl konjac glucomannan(CMKGM),or their combination through layer-by-layer assembly was investigated.Generally,the multilayered emulsions were destabilized in high Na Cl concentrations or medium p H that could interrupt the electrostatic interaction between the three polyelectrolytes or deprotonate CHI,indicating that electrostatic interaction played an important role in the stability of emulsions.Compared with the primary emulsion that was solely stabilized by WPI,extra coating with CHI and CMKGM generally increased the stability of the emulsion against repeated freezing-thawing,improved the retention of curcumin against heating,UV irradiation,and long-term storage,and the effects were more remarkable in the tertiary emulsion with CMKGM locating in the outmost layer.Since CMKGM has shown the colon-targeted delivery potency,the multilayered emulsions assembled by layer-by-layer deposition,especially the tertiary emulsion,could be used as an effective carrier for the targeted delivery of curcumin.展开更多
The molecular mechanics/Poisson-Boltzmann surface area(MM/PBSA) method has been widely used in predicting the binding affinity among ligands,proteins,and nucleic acids.However,the accuracy of the predicted binding ene...The molecular mechanics/Poisson-Boltzmann surface area(MM/PBSA) method has been widely used in predicting the binding affinity among ligands,proteins,and nucleic acids.However,the accuracy of the predicted binding energy by the standard MM/PBSA is not always good,especially in highly charged systems.In this work,we take the protein-nucleic acid complexes as an example,and showed that the use of screening electrostatic energy(instead of Coulomb electrostatic energy) in molecular mechanics can greatly improve the performance of MM/PBSA.In particular,the Pearson correlation coefficient of dataset Ⅱ in the modified MM/PBSA(i.e.,screening MM/PBSA) is about 0.52,much better than that(<0.33)in the standard MM/PBSA.Further,we also evaluate the effect of solute dielectric constant and salt concentration on the performance of the screening MM/PBSA.The present study highlights the potential power of the screening MM/PBSA for predicting the binding energy in highly charged bio-systems.展开更多
基金supported by National Nature Science Foundation of China(No.51872157 and No.52072208)National Key R&D Program of China 2021YFA1202802Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01N111)。
文摘Through tailoring interfacial chemistry,electrolyte engineering is a facile yet effective strategy for highperformance lithium(Li)metal batteries,where the solvation structure is critical for interfacial chemistry.Herein,the effect of electrostatic interaction on regulating an anion-rich solvation is firstly proposed.The moderate electrostatic interaction between anion and solvent promotes anion to enter the solvation sheath,inducing stable solid electrolyte interphase with fast Li+transport kinetics on the anode.This asdesigned electrolyte exhibits excellent compatibility with Li metal anode(a Li deposition/stripping Coulombic efficiency of 99.3%)and high-voltage LiCoO_(2) cathode.Consequently,the 50μm-thin Li||high-loading LiCoO_(2) cells achieve significantly improved cycling performance under stringent conditions of high voltage over 4.5 V,lean electrolyte,and wide temperature range(-20 to 60℃).This work inspires a groundbreaking strategy to manipulate the solvation structure through regulating the interactions of solvent and anion for highperformance Li metal batteries.
基金financial support from the National Natural Science Foundation of China(No.NSFC21773218)。
文摘The light weight,good bending resistance and low production cost make flexible perovskite solar cells(PSCs)good candidates in wearable electronics,portable charger,remote power,and flying objects.High power conversion efficiency(PCE)plays a crucial role on obtaining the high mass specific power of flexible devices.However,the performance for flexible PSCs is still having a large room to be improved.Here,we added the 2-amino-5-cyanopyridine(ACP)molecule with a polar electron density distribution in the perovskite precursor solution to improve the performance of flexible PSCs.The cyano groups with electron-withdrawing ability are expected to passivate positively charged point defects,while amines with electron donating ability are expected to passivate negatively charged point defects in perovskite films.Thanks to the effective passivation of defects at the grain boundary and surface of perovskite films,the PCE of flexible PSCs is obviously increased from 16.9%to 18.0%.These results provide a universal approach to improve performance of flexible PSCs by healing the defects in perovskite films through electrostatic interactions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10805029 and 10947175)the Education Department of Natural Science Foundation of Zhejiang province of China (Grant No. Y200803420)+1 种基金the Science Foundation of Ningbo University (Grant No. xkl09057)sponsored by K.C.Wong Magna Fund in Ningbo University of China
文摘The electrostatic interaction of a charged spherical particle in the vicinity of an orifice plane has been investigated in this paper. The particle can creep along the axis of the orifice and is immersed in a bulk electrolyte. By solving the Poisson-Boltzmann problem, we have obtained the effective electrostatic interaction for several values of reduced orifice radius h, including the cases of h ~ 1, h = i and h 〈 1. Two kinds of boundary conditions of the orifice plane are considered. One is the constant potential model corresponding to a conducting plane, the other is the constant charge model. In the constant potential model, there is an electrostatic attraction between the particle and the orifice plane when they get close to each other, while there is a pure electrostatic repulsion in the constant charge model. The interactions in both boundary models are sensitive to the parameters of the reduced orifice radius, the reduced particle-rifice distance, surface charge densities of the particle and orifice plane, and the reduced Debye screen constant corresponding to the salt-ion concentration and ion valence.
基金Project supported by the Scientific Research Fund of the Education Department of Zhejiang Province of China (Grant No.Y200803420)the National Natural Science Foundation of China (Grant No.10947175)+1 种基金the Natural Science Foundation of Ningbo,China (Grand No.2010A610089)K.C.Wong Magna Fund in Ningbo University of China
文摘We present the solutions of the interaction energy for a colloid system with a charged rod-like macromolecule immersed in a bulk electrolyte and moving along the axis of a circular orifice or disk (orifice/disk). The calculation requires a numerical computation of the surface charge profiles, which result from a constant surface potential on the macromolecule and the orifice/disk. In the calculation, remarkable divergences of the surface charge emerge on the edges of the macromolecule and the orifice/disk, which are well-known edge effects. The anisotropic distribution of the surface charge (effective dipole) results in an attraction between these two charged objects. This attraction is enhanced with the increase of the screening length of the system for both the orifice and the disk systems. However, the sizes of the orifice and the disk reduce to different effects on the interaction energy.
基金supported by the National Key R&D Program of China (2017YFD0400205)Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_1402)
文摘Soy protein isolate(SPI)is a commercial protein with balanced amino acids,while the poor solubility impedes its use in traditional foods.To overcome the problem,the complex coacervation of SPI/Flammulina velutipes polysaccharide(FVP)were investigated.Initial results revealed that the suitable amounts of FVP contributed to reducing the turbidity of SPI solution.Under electrostatic interaction,the formation of SPI/FVP coacervates were spontaneous and went through a nucleation and growth process.Low salt concentration(C_(NaCl)=10,50 mmol/L)led to an increase in the critical pH values(pHc,pHφ1)while the critical pH values decreased when C_(NaCl)≥100 mmol/L.The concentration of NaCl ions increased the content ofα-helix.With the increase of FVP,the critical pH values decreased and the content ofβ-sheet increased through electrostatic interaction.At SPI/FVP ratio of 10:1 and 15:1,the complex coacervation of SPI/FVP were saturated,and the coacervates had the same storage modulus value.SPI/FVP coacervates exhibited solid-like properties and presented the strongest storage modulus at C_(NaCl)=50 mmol/L.The optimal pH,SPI/FVP ratio and NaCl concentration of complex coacervation were collected,and the coacervates demonstrated a valuable application potential to protect and deliver bioactives and food ingredients.
基金supported by the National Science Foundation of China(Grant No.5202780089)the Fundamental Research Funds for the Central Universities(HUST:2172020kfy XJJS089)。
文摘The development of polymer-based solid-state batteries is severely limited by the low ionic conductivity of solid polymer electrolyte and the instable interface between polymer electrolyte and Li-metal anode.In this work,lithium iodide(LiI)as a bifunctional additive was introduced into the poly(ethylene oxide)(PEO)-based electrolyte to improve the ionic conductivity and to construct a stable interphase at the Li/PEO interface.I-anions offer a strong electrostatic interaction with hydrogen atoms on PEO chains(HPEO)and forming massive I–H bonds that cross-link PEO chains,decrease crystallinity of PEO,and thus improve Li~+interchain transport.In addition,LiI participates in the formation of an inorganic-rich interphase layer,which decreases the energy barrier of Li+transport across the interface and thus inhibits the growth of lithium dendrites.As a result,the composite PEO electrolyte with 2 wt%LiI(PEO-2 LiI)presents a very high ionic conductivity of 2.1×10^(-4) S cm-1 and a critical current density of 2.0 m A cm^(-2) at 45°C.Li symmetric cell with this PEO-2 LiI electrolyte exhibits a long-term cyclability over 600 h at 0.2 m A cm^(-2).Furthermore,solid-state LiFePO_(4) and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) batteries with the PEO-2 LiI electrolyte show an impressive electrochemical performance with outstanding cycling stability and rate capability at 45°C.
基金financial support from the Natural Science Foundation of Shandong Province(ZR2015CM037)the National Science Foundation of China(31571890)。
文摘The stability against various environmental stresses of the curcumin-loaded secondary and tertiary emulsions that was emulsified by whey protein isolate(WPI)and coated by chitosan(CHI),carboxymethyl konjac glucomannan(CMKGM),or their combination through layer-by-layer assembly was investigated.Generally,the multilayered emulsions were destabilized in high Na Cl concentrations or medium p H that could interrupt the electrostatic interaction between the three polyelectrolytes or deprotonate CHI,indicating that electrostatic interaction played an important role in the stability of emulsions.Compared with the primary emulsion that was solely stabilized by WPI,extra coating with CHI and CMKGM generally increased the stability of the emulsion against repeated freezing-thawing,improved the retention of curcumin against heating,UV irradiation,and long-term storage,and the effects were more remarkable in the tertiary emulsion with CMKGM locating in the outmost layer.Since CMKGM has shown the colon-targeted delivery potency,the multilayered emulsions assembled by layer-by-layer deposition,especially the tertiary emulsion,could be used as an effective carrier for the targeted delivery of curcumin.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874045 and 11774147)。
文摘The molecular mechanics/Poisson-Boltzmann surface area(MM/PBSA) method has been widely used in predicting the binding affinity among ligands,proteins,and nucleic acids.However,the accuracy of the predicted binding energy by the standard MM/PBSA is not always good,especially in highly charged systems.In this work,we take the protein-nucleic acid complexes as an example,and showed that the use of screening electrostatic energy(instead of Coulomb electrostatic energy) in molecular mechanics can greatly improve the performance of MM/PBSA.In particular,the Pearson correlation coefficient of dataset Ⅱ in the modified MM/PBSA(i.e.,screening MM/PBSA) is about 0.52,much better than that(<0.33)in the standard MM/PBSA.Further,we also evaluate the effect of solute dielectric constant and salt concentration on the performance of the screening MM/PBSA.The present study highlights the potential power of the screening MM/PBSA for predicting the binding energy in highly charged bio-systems.