To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying ...To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.展开更多
To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results dur...To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results during the electrostatic spraying process,the prepared process parameters of Cu-en/AP composite microspheres by electrostatic spray method under the orthogonal experimental design simulated by ANSYS(Fluent).The influence of flow rate,solvent ratio,and solid mass on the experimental results is examined using a controlled variable method.The results indicate that under the conditions of a flow rate of 2.67×10^(-3)kg/s an acetone-to-deionized water ratio of 1.5∶1.0,and a solid mass of 200 mg,the theoretical particle size of the composite microspheres can reach e nanoscale.Droplet trajectories in the electric field remain stable without significant deviation.The simulation results show that particle diameter decreases with increasing flow rate,with the trend leveling off around a flow rate of 1×10^(-3)kg/s.As the solvent ratio increases(with higher acetone content),particle diameter initially decreases,reaching a minimum around a ratio of 1.5∶1.0 before gradually increasing.Increasing the solid mass also reduces the particle diameter,with a linear increase in diameter observed at around 220 mg.Cu-en/AP composite microspheres with nanoscale dimensions were confirmed under these conditions by the final SEM images.展开更多
The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with ...The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collec...To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collection plates were determined firstly. Then the model parameters for the resistance of perforated and collection plates, obtained by small-scale flow simulation, were validated by medium-scale experiments. Through the comparison of the resistance and velocity distribution between simulation results and experimental data, the simplified model is proved to present the resistance characteristics of perforated and collection plates accurately. Numerical results show that after optimization, both the flow rate and the pressure drop in the upper room of electric field regions are basically equivalent to those of the lower room, and the velocity distribution in flue inlet of WESP becomes more uniform. Through the application in practice, the effectiveness and reliability of the optimization scheme are proved, which can provide valuable reference for further optimization of WESP.展开更多
The friction sensitivity(FS) of five aliphatic linear and eight cyclic nitramines has been determined and correlated with DFT B3LYP/6-31-G(d,p) // 6-311+G(d,p) positive(VS,max) and negative(VS,min) extremes of molecul...The friction sensitivity(FS) of five aliphatic linear and eight cyclic nitramines has been determined and correlated with DFT B3LYP/6-31-G(d,p) // 6-311+G(d,p) positive(VS,max) and negative(VS,min) extremes of molecular surface electrostatic potentials VS(r).While there is an ambiguous relationship between the VS,max values and FS values,the decrease of FS is connected(more or less) with increase in VS,min values.展开更多
Due to its extremely low electrostatic sensitivity,copper azide primary explosive is greatly limited in practical applications.In this study,a composite film with Cu-MOF in-situ growth on carbon nanofilm was prepared ...Due to its extremely low electrostatic sensitivity,copper azide primary explosive is greatly limited in practical applications.In this study,a composite film with Cu-MOF in-situ growth on carbon nanofilm was prepared by electrospinning and solvothermal methods,and CNF@Cu-N3film with electrostatic safety was obtained by carbonization and azide later.Its electrostatic sensitivity(E50)was greatly increased from 0.05 mJ of raw materials to 4.06 mJ,and still maintained a good detonation performance which could successfully detonate the CL-20 secondary explosive.This is mainly due to the synergistic effect of the carbon film and the MOF structure,which greatly improves the conductivity of the entire system and the uniform distribution of copper particles,providing a new preparation strategy for metal azide film that is suitable for the micro-initiator device.展开更多
In the present study,electrostatic atomization(EA)behavior of several test liquids having much higher viscosities(1 400 mPa·s)than have previously been studied was investigated by spraying at a series of applied ...In the present study,electrostatic atomization(EA)behavior of several test liquids having much higher viscosities(1 400 mPa·s)than have previously been studied was investigated by spraying at a series of applied voltages and flow rates.The results showed that to obtain stable cone-jet mode spraying and hence gain better monodispersity of droplets,electrical conductivity,viscosity and surface tension of the liquid are important controlling factors.The stable cone-jet mode could be easily established for liquids having shear viscosities in the range from 80 to 1 400 mPa·s and surface tensions below 65 mN·m-1.In contrast,methylcellulose aqueous solutions with shear viscosities ranging from 10 to 540 mPa·s and moderate surface tensions(50~56 mN·m-1)generated more complicated spraying modes.However,fine TiO2 powder(a few micrometers in size)could be prepared using the EA method from its precursor solutions.展开更多
In order to clear the activated area in electrostatic accelerator facilities,four accelerator facilities were selected and typical neutron emission experiments were performed.Neutron flux during operation and induced ...In order to clear the activated area in electrostatic accelerator facilities,four accelerator facilities were selected and typical neutron emission experiments were performed.Neutron flux during operation and induced activity caused by charged particles on the accelerator and its surrounding area after irradiation were measured.Also the monitored neutron flux and calculated value by Monte Carlo calculation using PHITS code were compared.It was confirmed that the results between calculated data and measured data showed the good agreement with each other.Finally,it was concluded that we have to take care the activation of beam line and target.But,it is not necessary to treat accelerator tank,surrounding materials,and building concrete as radioactive materials in case of decommissioning.展开更多
Taking stearic acid as the raw material,N-(2-(dimethylamino)ethyl)stearamide(C18N2N)was synthesized.A new surfactant was prepared by mixing C18N2N and cinnamic acid(TA)with fixed ratio.This surfactant was formed by no...Taking stearic acid as the raw material,N-(2-(dimethylamino)ethyl)stearamide(C18N2N)was synthesized.A new surfactant was prepared by mixing C18N2N and cinnamic acid(TA)with fixed ratio.This surfactant was formed by noncovalent electrostatic interactions,which avoided complicated synthetic procedures.The surface activity and rheological properties of the surfactant were investigated with a surface tensiometer and a rheometer.The critical micelle concentration(cmc)and the surface tension at cmc(γ_(cmc))of the surfactant were 0.11 mmol/L and 32.4 mN/m,indicative of strong aggregation and adsorption ability.The maximum amount adsorbed(Γ_(max))and the minimum molecular area occupied(A_(min))were 2.77μmol/m^(2)and 0.6 nm^(2).Wormlike micelles were formed at the concentration of 25 mmol/L.When the concentration was over 100 mmol/L,the zero-shear viscosity(η_(0))abruptly increased and then reached the maximum value for the surfactant of C18N2N/TA containing 150 mmol/L TA.The solution viscosity was as high as 1761.38 Pa·s.The effects of temperature on the rheological behavior were also considered.With the increase of temperature,the viscosity gradually increased.And when the temperature reached 40℃,η_(0)of the solution with the concentration of 100 mmol/L achieved the maximum value of 1370.386 Pa·s.When the temperature continued to rise,η_(0)began to decrease with further increasing temperature.A remarkable viscosity of 305.55 Pa·s was still remained at 50℃.The viscoelastic solutions showed good temperature resistance and shear resistance.The surfactant solutions applied as the fracturing fluid were also investigated.This surfactant also showed excellent sand-carrying performance,and the settling rate of the sand was merely 0.26 cm/min.This surfactant could be simply prepared and showed excellent performance,which expanded the preparation and application field of novel surfactants.展开更多
To investigate the differences in combustion and energy release characteristics of metastable intermolecular composite materials composed of aluminum alloys and polyvinylidene fluoride(PVDF)with different compositions...To investigate the differences in combustion and energy release characteristics of metastable intermolecular composite materials composed of aluminum alloys and polyvinylidene fluoride(PVDF)with different compositions,two types of alloys were selected:Al-Mg and Al-Si.Pure aluminum powder of the same size was also chosen for comparison.The PVDF-coated metal particle composites and the mixtures of PVDF with metal particles were prepared using electrospray(ES)and physical blending methods(PM),respectively.A systematic study was conducted on the morphology,compositional structure,combustion performance,energy release characteristics,and thermal reactivity of the fabricated composites and their combustion products through scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),combustion performance experiments,closed vessel pressure tests,and simultaneous thermogravimetric-differential scanning calorimetry(TG-DSC).The experimental results indicated that the PVDF-coated metal particles prepared by the electrospray method exhibited a distinct core-shell structure,with the metal particles in close contact with the PVDF matrix.Compared to the PM blended materials,the ES composites demonstrated superior combustion performance and energy release characteristics during combustion.Analysis of different metal fuel systems under identical preparation conditions revealed that Al-Mg and Al-Si fuels modulate the combustion and energy release properties of aluminum alloy-PVDF MICs through two distinct pathways.展开更多
Enhancing the output capacity of semiconductor bridge(SCB) through the application of composite nano-energetic films is a subject of wide concern. Furthermore, improving the safety, reliability, and production efficie...Enhancing the output capacity of semiconductor bridge(SCB) through the application of composite nano-energetic films is a subject of wide concern. Furthermore, improving the safety, reliability, and production efficiency of energetic semiconductor bridge(ESCB) is the primary focus for large-scale engineering applications in the future. Here, the Al/CuO nano-film ESCB was efficiently fabricated using 3D direct writing. The electrostatic safety of the film is enhanced by precisely adjusting the particle size of Al, while ensuring that the SCB can initiate the film with small energy. The burst characteristics of SCB/ESCB were thoroughly investigated by employing a 100 μF tantalum capacitor to induce SCB and ESCB under an intense voltage gradient. The solid-state heating process of both SCB and ESCB was analyzed with multi physical simulation(MPS). The experimental results demonstrate that the critical burst time of both SCB and ESCB decreases with increasing voltage. Under the same voltage, the critical burst time of ESCB is longer than that of SCB, primarily due to differences in the melting to vaporization stage. The MPS results indicate that the highest temperature is observed at the V-shaped corner of SCB. Due to the thermal contact resistance between SCB and the film, heat conduction becomes more concentrated in the central region of the bridge, resulting in a faster solid-state heating process for ESCB compared to SCB.The results of the gap ignition experiments indicate that at a 19 mm gap, an ESCB with a film mass of 10 mg can ignite nickel hydrazine nitrate(NHN) and cyclotrimethylenetrinitramine(RDX). This suggests that thermite ESCB can serve as a novel, safe, and reliable energy exchange element and initiator in largescale engineering applications.展开更多
The interfacial interaction between HMX molecules and coating materials is the key to the safety performance of explosives and has received extensive attention.However,screening suitable coating agents to enhance the ...The interfacial interaction between HMX molecules and coating materials is the key to the safety performance of explosives and has received extensive attention.However,screening suitable coating agents to enhance the interfacial effect to obtain high-energy and low-sensitivity explosives has long been a major challenge.In this work,HMX-PEI/rGO/g-C_(3)N_(4)(HPrGC)composites were innovatively prepared by a multi-level coating strategy of two-dimensional graphite rGO and g-C_(3)N_(4).The g-C_(3)N_(4) used for desensitization has a richπ-conjugated system and shows outstanding ability in reducing friction sensitivity.The hierarchical structure of HPrGC formed by electrostatic self-assembly andπ-πstacking can effectively dissipate energy accumulation under heat and mechanical stimulation through structural evolution,thus exhibiting a prominent synergistic desensitization effect on HMX.The results show that rGO/gC_(3)N_(4) coating has no effect on the crystal structure and chemical structure of HMX.More importantly,the perfect combination of g-C_(3)N_(4) and rGO endows HPrGC with enhanced thermal stability and ideal mechanical sensitivity(IS:21 J,FS:216 N).Obviously,the new fabrication of HPrGC enriches the variety of desensitizer materials and helps to deepen the understanding of the interaction between explosives and coatings.展开更多
By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variationa...By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.展开更多
Coacervation of oxidized glutathione(GSSG)and a cationic surfactant,didodecyldimethylammonium bromide(DDAB),was constructed mainly driven by the electrostatic and hydrophobic interactions.The pH-dependent coacervate o...Coacervation of oxidized glutathione(GSSG)and a cationic surfactant,didodecyldimethylammonium bromide(DDAB),was constructed mainly driven by the electrostatic and hydrophobic interactions.The pH-dependent coacervate of GSSG-DDAB(1∶4,mol/mol)was analyzed.Under acidic and neutral conditions,a turbid suspension of droplets is observed,and alkaline pH results in the phase separation of coacervates as the top phase.The coacervate phase exhibits good performance(extraction efficiency>85%)in extracting several dyes from water,including brilliant yellow,acid red 13,cresyl violet acetate,eriochrom blue SE,and 4-hydroxyazobenzene.The dyes are added into the suspension in acidic conditions.Then,the dyes are enriched and extracted along with the coacervates as the top phase when pH is adjusted to~10.Coacervation of GSSG with DDAB provides a simple approach to extract organic pollutants in wastewater treatment.展开更多
The flocculation behavior of ultrafine kaolinite suspension was investigated through settlement tests and FTIR method was employed to probe the adsorption mechanism of flocculant on kaolinite. The results show that th...The flocculation behavior of ultrafine kaolinite suspension was investigated through settlement tests and FTIR method was employed to probe the adsorption mechanism of flocculant on kaolinite. The results show that the maximum settling rate of kaolinite occurs at pH value of 3.33,which is close to the point of zero charge(PZC) of kaolinite (3.5). This result is in good agreement with the double electric layer theory. Kaolinite suspension reaches the largest settling rate at a low concentration of 39 g/t for poly diallyl-dimethyl-ammonium chloride(PDADMA) flocculant,whereas for polyacrylamides(PAM) the dosage is required to be 500 g/t. When macromolecule polymer is adsorbed on surface,kaolinite particles may be flocculant due to the bridging effect. There are cation flocculant characteristic bands on the spectrum of kaolinite but no obvious shifting. Thus,the adsorption of poly diallyl-dimethyl-ammonium chloride on kaolinite surface is physical adsorption.展开更多
Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesi...Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.展开更多
In a famous paper published in 1982, a very special class of gunshot residue particles(GSR) was named by Samarendra Basu "peeled orange", due to their particular structure, consisting of a barium/antimony co...In a famous paper published in 1982, a very special class of gunshot residue particles(GSR) was named by Samarendra Basu "peeled orange", due to their particular structure, consisting of a barium/antimony core covered by an outer lead leaflet. In this class of GSR particles the surface may show nodular structures of lead. Basu proposed an explanation in terms of a nucleus of antimony and barium that captures lead vapours produced after the explosion of a cartridge into a firearm: as solidification points of antimony and barium are close one another, both higher than solidification point of lead, he stated that lead occurs as a layer around the core in peeled orange GSR particles. In this paper we study the thermodynamic of the barium/antimony alloy and we hypothesize a formation process in terms of colloidal metal growth, charged particles and electrostatic attraction. We propose an updated model of formation for peeled orange GSR particles that explains the existence of outer lead leaflet and nodules in terms of electrostatic attraction of lead nanoparticles and instability of lead droplets.展开更多
基金National Natural Science Foundation of China(No.22275150)。
文摘To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.
基金National Natural Science Foundation of China(No.2275150)。
文摘To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results during the electrostatic spraying process,the prepared process parameters of Cu-en/AP composite microspheres by electrostatic spray method under the orthogonal experimental design simulated by ANSYS(Fluent).The influence of flow rate,solvent ratio,and solid mass on the experimental results is examined using a controlled variable method.The results indicate that under the conditions of a flow rate of 2.67×10^(-3)kg/s an acetone-to-deionized water ratio of 1.5∶1.0,and a solid mass of 200 mg,the theoretical particle size of the composite microspheres can reach e nanoscale.Droplet trajectories in the electric field remain stable without significant deviation.The simulation results show that particle diameter decreases with increasing flow rate,with the trend leveling off around a flow rate of 1×10^(-3)kg/s.As the solvent ratio increases(with higher acetone content),particle diameter initially decreases,reaching a minimum around a ratio of 1.5∶1.0 before gradually increasing.Increasing the solid mass also reduces the particle diameter,with a linear increase in diameter observed at around 220 mg.Cu-en/AP composite microspheres with nanoscale dimensions were confirmed under these conditions by the final SEM images.
基金National Natural Science Foundation of China(61974116)。
文摘The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
文摘To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collection plates were determined firstly. Then the model parameters for the resistance of perforated and collection plates, obtained by small-scale flow simulation, were validated by medium-scale experiments. Through the comparison of the resistance and velocity distribution between simulation results and experimental data, the simplified model is proved to present the resistance characteristics of perforated and collection plates accurately. Numerical results show that after optimization, both the flow rate and the pressure drop in the upper room of electric field regions are basically equivalent to those of the lower room, and the velocity distribution in flue inlet of WESP becomes more uniform. Through the application in practice, the effectiveness and reliability of the optimization scheme are proved, which can provide valuable reference for further optimization of WESP.
基金the project of the Ministry of Education,Youth and Sports of the Czech Republic No.MSM 0021627501
文摘The friction sensitivity(FS) of five aliphatic linear and eight cyclic nitramines has been determined and correlated with DFT B3LYP/6-31-G(d,p) // 6-311+G(d,p) positive(VS,max) and negative(VS,min) extremes of molecular surface electrostatic potentials VS(r).While there is an ambiguous relationship between the VS,max values and FS values,the decrease of FS is connected(more or less) with increase in VS,min values.
基金financial support from the National Natural Science Foundation of China(Grant No.12102051)the State Key Laboratory of Explosion Science and Technology(Grant No.QNKT2022-04)。
文摘Due to its extremely low electrostatic sensitivity,copper azide primary explosive is greatly limited in practical applications.In this study,a composite film with Cu-MOF in-situ growth on carbon nanofilm was prepared by electrospinning and solvothermal methods,and CNF@Cu-N3film with electrostatic safety was obtained by carbonization and azide later.Its electrostatic sensitivity(E50)was greatly increased from 0.05 mJ of raw materials to 4.06 mJ,and still maintained a good detonation performance which could successfully detonate the CL-20 secondary explosive.This is mainly due to the synergistic effect of the carbon film and the MOF structure,which greatly improves the conductivity of the entire system and the uniform distribution of copper particles,providing a new preparation strategy for metal azide film that is suitable for the micro-initiator device.
文摘In the present study,electrostatic atomization(EA)behavior of several test liquids having much higher viscosities(1 400 mPa·s)than have previously been studied was investigated by spraying at a series of applied voltages and flow rates.The results showed that to obtain stable cone-jet mode spraying and hence gain better monodispersity of droplets,electrical conductivity,viscosity and surface tension of the liquid are important controlling factors.The stable cone-jet mode could be easily established for liquids having shear viscosities in the range from 80 to 1 400 mPa·s and surface tensions below 65 mN·m-1.In contrast,methylcellulose aqueous solutions with shear viscosities ranging from 10 to 540 mPa·s and moderate surface tensions(50~56 mN·m-1)generated more complicated spraying modes.However,fine TiO2 powder(a few micrometers in size)could be prepared using the EA method from its precursor solutions.
文摘In order to clear the activated area in electrostatic accelerator facilities,four accelerator facilities were selected and typical neutron emission experiments were performed.Neutron flux during operation and induced activity caused by charged particles on the accelerator and its surrounding area after irradiation were measured.Also the monitored neutron flux and calculated value by Monte Carlo calculation using PHITS code were compared.It was confirmed that the results between calculated data and measured data showed the good agreement with each other.Finally,it was concluded that we have to take care the activation of beam line and target.But,it is not necessary to treat accelerator tank,surrounding materials,and building concrete as radioactive materials in case of decommissioning.
文摘Taking stearic acid as the raw material,N-(2-(dimethylamino)ethyl)stearamide(C18N2N)was synthesized.A new surfactant was prepared by mixing C18N2N and cinnamic acid(TA)with fixed ratio.This surfactant was formed by noncovalent electrostatic interactions,which avoided complicated synthetic procedures.The surface activity and rheological properties of the surfactant were investigated with a surface tensiometer and a rheometer.The critical micelle concentration(cmc)and the surface tension at cmc(γ_(cmc))of the surfactant were 0.11 mmol/L and 32.4 mN/m,indicative of strong aggregation and adsorption ability.The maximum amount adsorbed(Γ_(max))and the minimum molecular area occupied(A_(min))were 2.77μmol/m^(2)and 0.6 nm^(2).Wormlike micelles were formed at the concentration of 25 mmol/L.When the concentration was over 100 mmol/L,the zero-shear viscosity(η_(0))abruptly increased and then reached the maximum value for the surfactant of C18N2N/TA containing 150 mmol/L TA.The solution viscosity was as high as 1761.38 Pa·s.The effects of temperature on the rheological behavior were also considered.With the increase of temperature,the viscosity gradually increased.And when the temperature reached 40℃,η_(0)of the solution with the concentration of 100 mmol/L achieved the maximum value of 1370.386 Pa·s.When the temperature continued to rise,η_(0)began to decrease with further increasing temperature.A remarkable viscosity of 305.55 Pa·s was still remained at 50℃.The viscoelastic solutions showed good temperature resistance and shear resistance.The surfactant solutions applied as the fracturing fluid were also investigated.This surfactant also showed excellent sand-carrying performance,and the settling rate of the sand was merely 0.26 cm/min.This surfactant could be simply prepared and showed excellent performance,which expanded the preparation and application field of novel surfactants.
基金the National Natural Science Foundation of China(NSFC,Grant Nos.52176114 and 52306145)Natural Science Foundation of Jiangsu Province(Grant No.BK20230929)+3 种基金China Postdoctoral Science Foundation(Grant No.2023M731693)Fundamental Research Funds for the Central Universities,Grant No.30924010505Jiangsu Funding Program for Excellent Postdoctoral Talentthe Center of Analytical Facilities,Nanjing University of Science and Technology for providing technical equipment support for this article。
文摘To investigate the differences in combustion and energy release characteristics of metastable intermolecular composite materials composed of aluminum alloys and polyvinylidene fluoride(PVDF)with different compositions,two types of alloys were selected:Al-Mg and Al-Si.Pure aluminum powder of the same size was also chosen for comparison.The PVDF-coated metal particle composites and the mixtures of PVDF with metal particles were prepared using electrospray(ES)and physical blending methods(PM),respectively.A systematic study was conducted on the morphology,compositional structure,combustion performance,energy release characteristics,and thermal reactivity of the fabricated composites and their combustion products through scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),combustion performance experiments,closed vessel pressure tests,and simultaneous thermogravimetric-differential scanning calorimetry(TG-DSC).The experimental results indicated that the PVDF-coated metal particles prepared by the electrospray method exhibited a distinct core-shell structure,with the metal particles in close contact with the PVDF matrix.Compared to the PM blended materials,the ES composites demonstrated superior combustion performance and energy release characteristics during combustion.Analysis of different metal fuel systems under identical preparation conditions revealed that Al-Mg and Al-Si fuels modulate the combustion and energy release properties of aluminum alloy-PVDF MICs through two distinct pathways.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092 and 52372084)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_0709)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.30923010920)the State Key Laboratory of Transient Chemical Effects and Control,China,(Grant No.6142602230201).
文摘Enhancing the output capacity of semiconductor bridge(SCB) through the application of composite nano-energetic films is a subject of wide concern. Furthermore, improving the safety, reliability, and production efficiency of energetic semiconductor bridge(ESCB) is the primary focus for large-scale engineering applications in the future. Here, the Al/CuO nano-film ESCB was efficiently fabricated using 3D direct writing. The electrostatic safety of the film is enhanced by precisely adjusting the particle size of Al, while ensuring that the SCB can initiate the film with small energy. The burst characteristics of SCB/ESCB were thoroughly investigated by employing a 100 μF tantalum capacitor to induce SCB and ESCB under an intense voltage gradient. The solid-state heating process of both SCB and ESCB was analyzed with multi physical simulation(MPS). The experimental results demonstrate that the critical burst time of both SCB and ESCB decreases with increasing voltage. Under the same voltage, the critical burst time of ESCB is longer than that of SCB, primarily due to differences in the melting to vaporization stage. The MPS results indicate that the highest temperature is observed at the V-shaped corner of SCB. Due to the thermal contact resistance between SCB and the film, heat conduction becomes more concentrated in the central region of the bridge, resulting in a faster solid-state heating process for ESCB compared to SCB.The results of the gap ignition experiments indicate that at a 19 mm gap, an ESCB with a film mass of 10 mg can ignite nickel hydrazine nitrate(NHN) and cyclotrimethylenetrinitramine(RDX). This suggests that thermite ESCB can serve as a novel, safe, and reliable energy exchange element and initiator in largescale engineering applications.
基金the financial support from the National Natural Science Foundation of China (Grant No.51972278)the Open Project of the State Key Laboratory of Environment-friendly Energy Materials (Southwest University of Science and Technology,Grant No.20fksy16)。
文摘The interfacial interaction between HMX molecules and coating materials is the key to the safety performance of explosives and has received extensive attention.However,screening suitable coating agents to enhance the interfacial effect to obtain high-energy and low-sensitivity explosives has long been a major challenge.In this work,HMX-PEI/rGO/g-C_(3)N_(4)(HPrGC)composites were innovatively prepared by a multi-level coating strategy of two-dimensional graphite rGO and g-C_(3)N_(4).The g-C_(3)N_(4) used for desensitization has a richπ-conjugated system and shows outstanding ability in reducing friction sensitivity.The hierarchical structure of HPrGC formed by electrostatic self-assembly andπ-πstacking can effectively dissipate energy accumulation under heat and mechanical stimulation through structural evolution,thus exhibiting a prominent synergistic desensitization effect on HMX.The results show that rGO/gC_(3)N_(4) coating has no effect on the crystal structure and chemical structure of HMX.More importantly,the perfect combination of g-C_(3)N_(4) and rGO endows HPrGC with enhanced thermal stability and ideal mechanical sensitivity(IS:21 J,FS:216 N).Obviously,the new fabrication of HPrGC enriches the variety of desensitizer materials and helps to deepen the understanding of the interaction between explosives and coatings.
文摘By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.
文摘Coacervation of oxidized glutathione(GSSG)and a cationic surfactant,didodecyldimethylammonium bromide(DDAB),was constructed mainly driven by the electrostatic and hydrophobic interactions.The pH-dependent coacervate of GSSG-DDAB(1∶4,mol/mol)was analyzed.Under acidic and neutral conditions,a turbid suspension of droplets is observed,and alkaline pH results in the phase separation of coacervates as the top phase.The coacervate phase exhibits good performance(extraction efficiency>85%)in extracting several dyes from water,including brilliant yellow,acid red 13,cresyl violet acetate,eriochrom blue SE,and 4-hydroxyazobenzene.The dyes are added into the suspension in acidic conditions.Then,the dyes are enriched and extracted along with the coacervates as the top phase when pH is adjusted to~10.Coacervation of GSSG with DDAB provides a simple approach to extract organic pollutants in wastewater treatment.
基金Project(2005CB623701) supported by the Major State Basic Research Development Program of China
文摘The flocculation behavior of ultrafine kaolinite suspension was investigated through settlement tests and FTIR method was employed to probe the adsorption mechanism of flocculant on kaolinite. The results show that the maximum settling rate of kaolinite occurs at pH value of 3.33,which is close to the point of zero charge(PZC) of kaolinite (3.5). This result is in good agreement with the double electric layer theory. Kaolinite suspension reaches the largest settling rate at a low concentration of 39 g/t for poly diallyl-dimethyl-ammonium chloride(PDADMA) flocculant,whereas for polyacrylamides(PAM) the dosage is required to be 500 g/t. When macromolecule polymer is adsorbed on surface,kaolinite particles may be flocculant due to the bridging effect. There are cation flocculant characteristic bands on the spectrum of kaolinite but no obvious shifting. Thus,the adsorption of poly diallyl-dimethyl-ammonium chloride on kaolinite surface is physical adsorption.
基金the financial support by Postgraduate Research & Practice Innovation Program from Jiangsu Science and Technology Department under Grant number KYCX19_0320。
文摘Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.
文摘In a famous paper published in 1982, a very special class of gunshot residue particles(GSR) was named by Samarendra Basu "peeled orange", due to their particular structure, consisting of a barium/antimony core covered by an outer lead leaflet. In this class of GSR particles the surface may show nodular structures of lead. Basu proposed an explanation in terms of a nucleus of antimony and barium that captures lead vapours produced after the explosion of a cartridge into a firearm: as solidification points of antimony and barium are close one another, both higher than solidification point of lead, he stated that lead occurs as a layer around the core in peeled orange GSR particles. In this paper we study the thermodynamic of the barium/antimony alloy and we hypothesize a formation process in terms of colloidal metal growth, charged particles and electrostatic attraction. We propose an updated model of formation for peeled orange GSR particles that explains the existence of outer lead leaflet and nodules in terms of electrostatic attraction of lead nanoparticles and instability of lead droplets.