期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Hierarchically electrospun nanofibers and their applications:A review 被引量:4
1
作者 Muhammad Badmus Jing Liu +2 位作者 NüWang Norbert Radacsi Yong Zhao 《Nano Materials Science》 CAS CSCD 2021年第3期213-232,共20页
Electrospinning is a popular method for generating long and continuous nanofibers due to its simplicity and versatility.However,conventional electrospun products have weak strength and low availability,which restrict ... Electrospinning is a popular method for generating long and continuous nanofibers due to its simplicity and versatility.However,conventional electrospun products have weak strength and low availability,which restrict their functionality in complex applications.Hierarchical morphology introduces additional and distinctive structural layers onto electrospun fibers.This requires either an extra fabrication step or controlling electrospinning parameters to achieve the desired morphology.Hierarchical morphology can improve the properties of electrospun nanofibers while also mitigating the undesired characteristics.This review discusses the primary and secondary hierarchical structures of electrospun nanomaterials.Hierarchical structures were found to enhance the functionality of nanomaterials and improve pore connectivity and surface areas of electrospun nanofibers.A further advantage is the ability to impart multiple functionalities on nanostructures.With a better understanding of some of the dominant hierarchical structures,nanomaterials applications in drug delivery,tissue engineering,catalysis,and energy devices industries can be improved. 展开更多
关键词 Hierarchical structures electrospun nanofibers Hollow fibers Core-shell fibers
在线阅读 下载PDF
Bimetallic ZIFs-derived electrospun carbon nanofiber membrane as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery 被引量:3
2
作者 Yanan Ma Shaoru Tang +5 位作者 Haimeng Wang Yuxuan Liang Dingyu Zhang Xiaoyang Xu Qian Wang Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期138-149,I0006,共13页
The recharged zinc-air battery(ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices.Fabricating the efficient bifunctional oxygen catalyst using a convenient s... The recharged zinc-air battery(ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices.Fabricating the efficient bifunctional oxygen catalyst using a convenient strategy is vitally important for the rechargeable ZAB.In this study,the bimetallic ZIFs-containing electrospun(ES) carbon nanofibers membrane with hierarchically porous structure was prepared by coaxial electrospinning and carbonization process,which was expected to be a bifunctional electrocatalyst for ZABs.Owing to the formed dual single-atomic sites of Co-N_(4) and Zn-N_(4),the obtained ES-Co/ZnCNZIFexhibited the preferable performance toward oxygen reduction reaction(ORR) with E1/2of 0.857 V and JLof 5.52 mA cm^(-2),which were more than Pt/C.Meanwhile,it exhibited a marked oxygen evolution reaction(OER) property with overpotential of 462 mV due to the agglomerated metallic Co nanoparticles.Furthermore,the ZAB based on the ES-Co/Zn-CNZIFcarbon nanofibers membranes delivered peak power density of 215 mW cm^(-2),specific capacity of 802.6 mA h g^(-1),and exceptional cycling stability,far larger than Pt/C+RuO_(2)-based ZABs.A solid-state ZAB based on ES-Co/Zn-CNZIFshowed better flexibility and stability with different bending angles. 展开更多
关键词 electrospun nanofibers membranes Zeolite imidazole framework Zinc-air battery ORR/OER bifunction Dual single-atomic sites catalysts
在线阅读 下载PDF
Electrospun gelatin/chitosan nanofibers containing curcumin for multifunctional food packaging 被引量:1
3
作者 Mengxia Duan Jishuai Sun +4 位作者 Yequn Huang Haixin Jiang Yaqin Hu Jie Pang Chunhua Wu 《Food Science and Human Wellness》 SCIE CSCD 2023年第2期614-621,共8页
Recently,food grade nanofiber-based materials have received growing attentions in food packaging.In this work,novel active and intelligent packaging nanofibers based on gelatin/chitosan with curcumin(GA/CS/CUR)were de... Recently,food grade nanofiber-based materials have received growing attentions in food packaging.In this work,novel active and intelligent packaging nanofibers based on gelatin/chitosan with curcumin(GA/CS/CUR)were developed via electrospinning technique.Effects of the incorporation of CUR content(0.1%-0.3%,m/m)on the microstructure and functional properties of the electrospun nanofibers were investigated.Morphological studies using scanning electron microscopy indicated that loading CUR can affect the average diameter of nanofiber mats,which remained around 160-180 nm.The addition of an appropriate level CUR(0.2%,m/m)led to a stronger intermolecular interaction,and thus enhanced the thermal stability and tensile strength of the obtained nanofibers.Meanwhile,the incorporation of CUR significantly improved antioxidant activity and the antimicrobial activity of GA/CS/CUR nanofibers.Moreover,the sensitivity of nanofibers to ammonia results indicated that GA/CS nanofibers containing 0.2%CUR(GA/CS/CURⅡ)presented high sensitivity of colorimetric behavior to ammonia(within 3 min).These results suggest GA/CS/CURⅡnanofibers has great potential as a multifunctional packaging to protect and monitor the freshness of proteinrich animal foods,such as meat and seafood. 展开更多
关键词 electrospun nanofibers CURCUMIN NH3 indicator Active and intelligent packaging Antibacterial and antioxidant activities
在线阅读 下载PDF
High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery 被引量:5
4
作者 Lu Gao Jianxin Li +3 位作者 Jingge Ju Bowen Cheng Weimin Kang Nanping Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期644-654,共11页
The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility gre... The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility greatly restrict the development of all-solid-state battery.In this study,a composite electrolyte combining the electrospun polyamide 6(PA6)nanofiber membrane with hierarchical structure and the polyethylene oxide(PEO)polymer is investigated.The introduction of PA6 nanofiber membrane can effectively reduce the crystallinity of the polymer,so that the ionic conductivity of the electrolyte can be enhanced.Moreover,it is found that the presence of finely branched fibers in the hierarchical structure PA6 membrane allows the polar functional groups(C=O and N-H bonds)to be fully exposed,which provides sufficient functional sites for lithium ion transport and helps to regulate the uniform deposition of lithium metal.Moreover,the hierarchical structure can enhance the mechanical strength(9.2 MPa)of the electrolyte,thereby effectively improving the safety and cycle stability of the battery.The prepared Li/Li symmetric battery can be stably cycled for 1500 h under 0.3 mA cm^(-2) and 60℃.This study demonstrates that the prepared electrolyte has excellent application prospects in the next generation all-solid-state lithium metal batteries. 展开更多
关键词 Hierarchical structure PA6 electrospun nanofiber membrane All-solid-state composite polymer electrolyte Lithium metal battery
在线阅读 下载PDF
Hierarchical structured CoP nanosheets/carbon nanofibers bifunctional eletrocatalyst for high-efficient overall water splitting 被引量:4
5
作者 Xiao-Qiao Xie Junpeng Liu +3 位作者 Chaonan Gu Jingjing Li Yan Zhao Chun-Sen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期503-510,I0013,共9页
The design of efficient,stable,and economical electrocatalysts for oxygen and hydrogen evolution reaction(OER and HER)is a major challenge for overall water splitting.Herein,a hierarchical structured CoP/carbon nanofi... The design of efficient,stable,and economical electrocatalysts for oxygen and hydrogen evolution reaction(OER and HER)is a major challenge for overall water splitting.Herein,a hierarchical structured CoP/carbon nanofibers(CNFs)composite was successfully synthesized and its potential application as a high-efficiency bifunctional electrocatalyst for overall splitting water was evaluated.The synergetic effect of two-dimensional(2D)CoP nanosheets and on e-dimensi on al(1D)CNFs endowed the CoP/CNFs composites with abundant active sites and rapid electron and mass transport pathways,and thereby significantly improved the electrocatalytic performances.The optimized CoP/CNFs delivered a current density of 10 mA cm^(-2) at low overpotential of 325 mV for OER and 225 mV for HER.In the overall water splitting,CoP/CNFs achieved a low potential of 1.65 V at 10 mA cm^(-2).The facile strategy provided in the present work can facilitate the design and development of multifunctional non-noble metal catalysts for energy applications. 展开更多
关键词 Bifunctional electrocatalyst Overall splitting water electrospun carbon nanofibers CoP nanosheets Non-noble metal catalysts
在线阅读 下载PDF
Grapevine-like high entropy oxide composites boost high-performance lithium sulfur batteries as bifunctional interlayers 被引量:1
6
作者 Huarong Fan Yubing Si +3 位作者 Yiming Zhang Fulong Zhu Xin Wang Yongzhu Fu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期565-572,共8页
Lithium-sulfur batteries(LSBs)with high energy densities have been demonstrated the potential for energy-intensive demand applications.However,their commercial applicability is hampered by hysteretic electrode reactio... Lithium-sulfur batteries(LSBs)with high energy densities have been demonstrated the potential for energy-intensive demand applications.However,their commercial applicability is hampered by hysteretic electrode reaction kinetics and the shuttle effect of lithium polysulfides(LiPSs).In this work,an interlayer consisting of high-entropy metal oxide(Cu_(0.7)Fe_(0.6)Mn_(0.4)Ni_(0.6)Sn_(0.5))O_(4) grown on carbon nanofibers(HEO/CNFs)is designed for LSBs.The CNFs with highly porous networks provide transport pathways for Li^(+) and e^(-),as well as a physical sieve effect to limit LiPSs crossover.In particular,the grapevine-like HEO nanoparticles generate metal-sulfur bonds with LiPSs,efficiently anchoring active materials.The unique structure and function of the interlayer enable the LSBs with superior electrochemical performance,i.e.,the high specific capacity of 1381 mAh g^(-1) at 0.1 C and 561 mAh g^(-1) at 6 C.This work presents a facile strategy for exploiting high-performance LSBs. 展开更多
关键词 electrospun carbon nanofibers Grapevine-like morphology Hierarchical physical sieve effect High-entropy induced chemisorption Lithium-sulfur battery
在线阅读 下载PDF
An ion-released MgI_(2)-doped separator inducing a LiI-containing solid electrolyte interphase for dendrite-free Li metal anodes 被引量:1
7
作者 Shan Yi Zhe Su +4 位作者 Wanyu Zhang Hongli Chen Yayun Zhang Bo Niu Donghui Long 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期83-94,I0003,共13页
Lithium metal batteries are among the strong contenders to satisfy the ever-increasing needs of energy storage systems,which however suffer from poor composition of the solid electrolyte interphase(SEI)layer and uncon... Lithium metal batteries are among the strong contenders to satisfy the ever-increasing needs of energy storage systems,which however suffer from poor composition of the solid electrolyte interphase(SEI)layer and uncontrolled Li dendrites formation.In this regard,we report on the design of an ionreleased MgI_(2)-doped polyacrylonitrile(PAN)based nanofiber(MPANF)separator,which can lead to conducive SEI layer and dendrite-free Li anode.The combination of the lithophilic MgI_(2)nanoparticles with polarized PAN matrix comprehensively functions as a high-compatible interpenetrating network to homogenize ionic transportation and confront dendrite growth.The released I ions introduce the highion-conductivity LiI into SEI layer,which could induce the formation of favorable and protective interface layer in the early stage,as embodied in the enrichment of advantageous components such as LiN_(x)O_(y),Li_(2)O,LiF,and Li_(3)N.Profited from the high-affinity MPANF separator,the Li||Li symmetric cell achieves an ultralow voltage hysteresis of 46 mV with an extended lifespan of 580 h.And a prolonged lifetime of 590cycles with an enhanced specific capacity of 140.1 m Ah g^(-1)and the Coulombic efficiency of 96.2%at 1C can be obtained in full cells.This work may offer a facile and high-affinity alternative to traditional polymeric separators for high-performance and dendrite-free Li metal batteries. 展开更多
关键词 Lithium metal anode LiI-containing layer Dendrite-free anode electrospun nanofiber separator
在线阅读 下载PDF
A Flexible‑Integrated Multimodal Hydrogel‑Based Sensing Patch
8
作者 Peng Wang Guoqing Wang +4 位作者 Guifen Sun Chenchen Bao Yang Li Chuizhou Meng Zhao Yao 《Nano-Micro Letters》 2025年第7期107-125,共19页
Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health.However,current commercial products of polysomnography are cumbersome with connecting wires a... Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health.However,current commercial products of polysomnography are cumbersome with connecting wires and state-of-the-art flexible sensors are still interferential for being attached to the body.Herein,we develop a flexible-integrated multimodal sensing patch based on hydrogel and its application in unconstraint sleep monitoring.The patch comprises a bottom hydrogel-based dualmode pressure–temperature sensing layer and a top electrospun nanofiber-based non-contact detection layer as one integrated device.The hydrogel as core substrate exhibits strong toughness and water retention,and the multimodal sensing of temperature,pressure,and non-contact proximity is realized based on different sensing mechanisms with no crosstalk interference.The multimodal sensing function is verified in a simulated real-world scenario by a robotic hand grasping objects to validate its practicability.Multiple multimodal sensing patches integrated on different locations of a pillow are assembled for intelligent sleep monitoring.Versatile human–pillow interaction information as well as their evolution over time are acquired and analyzed by a one-dimensional convolutional neural network.Track of head movement and recognition of bad patterns that may lead to poor sleep are achieved,which provides a promising approach for sleep monitoring. 展开更多
关键词 Multimodal sensing Proximity sensor Pressure sensor Temperature sensor electrospun nanofibers
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部