期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Electrophoretic deposition of hybrid organic-inorganic PTFE/Al/CuO energetic film 被引量:3
1
作者 Yan-jun Yin Feng Hu +1 位作者 Le-hua Cheng Xiao-dong Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期112-118,共7页
Thermite films are typical energetic materials(EMs)and have great value in initiating explosive devices.However,research in thermite film preparation is far behind that of research in thermite powders.Electrophoretic ... Thermite films are typical energetic materials(EMs)and have great value in initiating explosive devices.However,research in thermite film preparation is far behind that of research in thermite powders.Electrophoretic deposition(EPD)is an emerging,rapid coating method for film fabrication,including of energetic composite films.In this work,a polytetrafluoroethylene(PTFE)/Al/CuO organic-inorganic hybrid energetic film was successfully obtained using the above method for the first time.The addition of lithocholic acid as a surfactant into the electroplating suspension enabled PTFE to be charged.The combustion and energy release were analyzed by means of a high-speed camera and differential scanning calorimetery(DSC).It was found that the combustion process and energy release of PTFE/Al/CuO were much better than that of Al/CuO.The main reason for the excellent combustion performance of the hybrid PTFE/Al/CuO system was that the oxidability of PTFE accelerated the redox reaction between Al and CuO.The prepared PTFE/Al/CuO film was also employed as ignition material to fire a B-KNO_3 explosive successfully,indicating considerable potential for use as an ignition material in micro-ignitors.This study sheds light on the preparation of fluoropolymer-containing organic-inorganic hybrid energetic films by one-step electrophoretic deposition. 展开更多
关键词 Energetic film electrophoretic deposition Fluorine-based polymers Combustion performance THERMITE
在线阅读 下载PDF
Effect of TbF_(3)diffusion on the demagnetization behavior and domain evolution of sintered Nd-Fe-B magnets by electrophoretic deposition
2
作者 曹学静 郭帅 +5 位作者 谢宇恒 金磊 丁广飞 郑波 陈仁杰 闫阿儒 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期481-485,共5页
We studied the magnetic properties and domain evolution of annealed and TbF3-diffused sintered Nd-Fe-B magnets using the electrophoretic deposition method.After TbF_(3)diffusion,the coercivity increased significantly ... We studied the magnetic properties and domain evolution of annealed and TbF3-diffused sintered Nd-Fe-B magnets using the electrophoretic deposition method.After TbF_(3)diffusion,the coercivity increased significantly by 9.9 kOe and microstructural analysis suggested that Tb favored the formation of the(Nd,Tb)_(2)Fe_(14)B shell phase in the outer region of the matrix grains.The first magnetization reversal and the dynamic successive domain propagation process were detected with a magneto-optical Kerr microscope.For the TbF_(3)-diffused magnet,the magnetization reversal appeared at a larger applied field and the degree of simultaneous magnetization reversal decreased compared with an annealed magnet.During demagnetization after full magnetization,the occurrence of domain wall motion(DWM)in the reproduced multi-domain regions was observed by the step method.The maximum polarization change resulting from the reproduced DWM was inversely related to the coercivity.The increased coercivity for the diffused magnet was mainly attributed to the more difficult nucleation of the magnetic reversed region owing to the improved magneto-crystalline anisotropy field as a result of Tb diffusion. 展开更多
关键词 sintered Nd-Fe-B magnet electrophoretic deposition grain boundary diffusion domain evolution
在线阅读 下载PDF
Electrophoretically deposited binder-free 3-D carbon/sulfur nanocomposite cathode for high-performance Li–S batteries 被引量:1
3
作者 Sasan Ghashghaie Samson Ho-Sum Cheng +3 位作者 Jie Fang Hafiz Khurram Shahzad Robin Lok-Wang Ma Chi-Yuen Chung 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期92-101,I0003,共11页
In the present study,the electrophoretic deposition method was successfully applied as a binder-free and scalable approach to deposit carbonaceous nanomaterials on carbon fiber paper(CFP)for cathode applications in Li... In the present study,the electrophoretic deposition method was successfully applied as a binder-free and scalable approach to deposit carbonaceous nanomaterials on carbon fiber paper(CFP)for cathode applications in Li-S batteries.The microstructural studies of the EPD-CNT film using scanning electron microscopy(SEM)revealed the formation of a crack-free and porous layer of CNTs being uniformly distributed on the CFP surface.The EPD:CFP/CNT/S cathode delivered a capacity around 2.2 times higher than that obtained in the absence of the EPD-CNT film(CFP/S cell)after 50 cycles and a capacity of935 mAh g^-1 after 100 cycles at 0.1 C.The EPD method was then employed to fabricate layer-by-layer structures where the EPD-CNT film was decorated with carbon black particles.The initial capacity as well as the reversible capacity after 100 cycles was further increased by the EPD:CFP/CNT/KB/S layer-by-layer structure to 1473 and 1033 mAh g^-1,respectively,indicating effective suppression of the shuttle effect.In addition,the rate performance of CFP/S was improved by depositing the EPD-CNT and EPD-CNT/carbon black architectures on CFP surface,and even further enhanced through the co-deposition of CNT and Pt nanoparticles by EPD,delivering a specific capacity of around 730 mAh g^-1 at 1 C.Finally,the cathodes fabricated by EPD were observed to outperform those made by the conventional casting method in terms of cycling performance,internal resistance,and polarization.This difference was ascribed to the non-uniform microstructure of the Cast-CNT film,which resulted in poor interfacial connection between the CNT agglomerates,hindering uniform sulfide/sulfur deposition during cycling.The obtained results suggested that the binder-free C/S nanocomposite cathode made by EPD is key to further enhance the specific capacity and energy density of Li-S batteries. 展开更多
关键词 electrophoretic deposition Lithium-sulfur batteries Carbon nanotubes C/S nanocomposite
在线阅读 下载PDF
Effect of metal nanoparticle doping concentration on surface morphology and field emission properties of nano-diamond films
4
作者 Yao Wang Sheng-Wang Yu +3 位作者 Yan-Peng Xue Hong-Jun Hei Yan-Xia Wu Yan-Yan Shen 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期617-624,共8页
Nano-diamond particles are co-deposited on Ti substrates with metal(Ti/Ni) nanoparticles(NPs) by the electrophoretic deposition(EPD) method combined with a furnace annealing at 800℃ under N_(2) atmosphere. Modificati... Nano-diamond particles are co-deposited on Ti substrates with metal(Ti/Ni) nanoparticles(NPs) by the electrophoretic deposition(EPD) method combined with a furnace annealing at 800℃ under N_(2) atmosphere. Modifications of structural and electron field emission(EFE) properties of the metal-doped films are investigated with different metal NPs concentrations. Our results show that the surface characteristics and EFE performances of the samples are first enhanced and then reduced with metal NPs concentration increasing. Both the Ti-doped and Ni-doped nano-diamond composite films exhibit optimal EFE and microstructural performances when the doping quantity is 5 mg. Remarkably enhanced EFE properties with a low turn-on field of 1.38 V/μm and a high current density of 1.32 mA/cm^(2) at an applied field of 2.94 V/μm are achieved for Ni-doped nano-diamond films, and are superior to those for Ti-doped ones. The enhancement of the EFE properties for the Ti-doped films results from the formation of the TiC-network after annealing. However, the doping of electron-rich Ni NPs and formation of high conductive graphitic phase are considered to be the factor, which results in marvelous EFE properties for these Ni-doped nano-diamond films. 展开更多
关键词 diamond films metal doping electrophoretic deposition field emission properties
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部