Some nonlinear behavior in electron cyclotron resonance plasma was investigated using a two-dimension hybrid-mode with self-consistent microwave absorption. The saturation,oscillations of plasma parameters (plasma den...Some nonlinear behavior in electron cyclotron resonance plasma was investigated using a two-dimension hybrid-mode with self-consistent microwave absorption. The saturation,oscillations of plasma parameters (plasma density, potential, electron temperature) versus operating conditions (pressure, power) are discussed. Our simulation results are consistent qualitatively with many experimental measurements.展开更多
A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid w...A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.展开更多
Point and line defects are of vital importance to the physical and chemical properties of certain two-dimensional(2D)materials.Although electron beams have been demonstrated to be capable of creating single-and multi-...Point and line defects are of vital importance to the physical and chemical properties of certain two-dimensional(2D)materials.Although electron beams have been demonstrated to be capable of creating single-and multi-atom defects in 2D materials,the products are often random and difficult to predict without theoretical inputs.In this study,the thermal motion of atoms and electron incident angle were additionally considered to study the vacancy evolution in a black phosphorus(BP)monolayer by using an improved first-principles molecular dynamics method.The P atoms in monolayer BP tend to be struck away one by one under an electron beam within the displacement threshold energy range of 8.55-8.79 eV,which ultimately induces the formation of a zigzag-like chain vacancy.The chain vacancy is a thermodynamically metastable state and is difficult to obtain by conventional synthesis methods because the vacancy formation energy of 0.79 eV/edge atom is higher than the typical energy in monolayer BP.Covalent-like quasi-bonds and a charge density wave are formed along the chain vacancy,exhibiting rich electronic properties.This work proposes a theoretical protocol for simulating a complete elastic collision process of electron beams with 2D layers and will facilitate the establishment of detailed theoretical guidelines for experiments on 2D material etching using focused high-energy electron beams.展开更多
B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the si...B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.展开更多
A 4 MeV RF linear accelerator for electron beam irradiation applications has been developed at the PBP-CMU Electron Linac Laboratory,Thailand.The system has been reengineered using a decommissioned medical linear acce...A 4 MeV RF linear accelerator for electron beam irradiation applications has been developed at the PBP-CMU Electron Linac Laboratory,Thailand.The system has been reengineered using a decommissioned medical linear accelerator.The main components include a thermionic DC electron gun,an RF linear accelerator,a beam diagnostic chamber,and a beam exit window for electron beam irradiation.Therefore,reengineering must be performed based on the characteristics of the electron beam and its dynamics throughout the system.In this study,the electron beam current density emitted from the cathode was calculated based on the thermionic emission theory,and the result was used to produce the electron beam distribution in the gun using CST Studio Suite^(■)software.The properties of the electron beam and its acceleration in the linear accelerator and downstream diagnostic section were studied using the ASTRA electron beam dynamics simulation code,with the aim of producing an electron beam with an average energy of 4 MeV at the linear accelerator exit.The transverse beam profile and electron deposition dose in the ambient environment were calculated using Geant4 Monte Carlo simulation software to estimate the beam performance for the irradiation experiments.The parameters studied can be used as guidelines for machine operation and future experimental plans.展开更多
文摘Some nonlinear behavior in electron cyclotron resonance plasma was investigated using a two-dimension hybrid-mode with self-consistent microwave absorption. The saturation,oscillations of plasma parameters (plasma density, potential, electron temperature) versus operating conditions (pressure, power) are discussed. Our simulation results are consistent qualitatively with many experimental measurements.
文摘A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.
基金the National Natural Science Foundation of China(Grant Nos.11622437,61674171,11804247,and 11974422)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB30000000)+1 种基金Key Research Program of Frontier Sciences,Chinese Academy of Sciences(B.L,W.Z.)the Fundamental Research Funds for the Central Universities,China,and the Research Funds of Renmin University of China[Grant Nos.16XNLQ01 and No.19XNQ025(W.J.)].
文摘Point and line defects are of vital importance to the physical and chemical properties of certain two-dimensional(2D)materials.Although electron beams have been demonstrated to be capable of creating single-and multi-atom defects in 2D materials,the products are often random and difficult to predict without theoretical inputs.In this study,the thermal motion of atoms and electron incident angle were additionally considered to study the vacancy evolution in a black phosphorus(BP)monolayer by using an improved first-principles molecular dynamics method.The P atoms in monolayer BP tend to be struck away one by one under an electron beam within the displacement threshold energy range of 8.55-8.79 eV,which ultimately induces the formation of a zigzag-like chain vacancy.The chain vacancy is a thermodynamically metastable state and is difficult to obtain by conventional synthesis methods because the vacancy formation energy of 0.79 eV/edge atom is higher than the typical energy in monolayer BP.Covalent-like quasi-bonds and a charge density wave are formed along the chain vacancy,exhibiting rich electronic properties.This work proposes a theoretical protocol for simulating a complete elastic collision process of electron beams with 2D layers and will facilitate the establishment of detailed theoretical guidelines for experiments on 2D material etching using focused high-energy electron beams.
文摘B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.
基金supported by Chiang Mai University for providing infrastructure and the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation[grant number B05F650022]for the software CST Studio Suite^(■)2023Financial support for the reengineering and commissioning of the accelerator system was provided by the Thailand Center of Excellence in Physics(ThEP Center),Science and Technology Park Chiang Mai University(CMU STeP)。
文摘A 4 MeV RF linear accelerator for electron beam irradiation applications has been developed at the PBP-CMU Electron Linac Laboratory,Thailand.The system has been reengineered using a decommissioned medical linear accelerator.The main components include a thermionic DC electron gun,an RF linear accelerator,a beam diagnostic chamber,and a beam exit window for electron beam irradiation.Therefore,reengineering must be performed based on the characteristics of the electron beam and its dynamics throughout the system.In this study,the electron beam current density emitted from the cathode was calculated based on the thermionic emission theory,and the result was used to produce the electron beam distribution in the gun using CST Studio Suite^(■)software.The properties of the electron beam and its acceleration in the linear accelerator and downstream diagnostic section were studied using the ASTRA electron beam dynamics simulation code,with the aim of producing an electron beam with an average energy of 4 MeV at the linear accelerator exit.The transverse beam profile and electron deposition dose in the ambient environment were calculated using Geant4 Monte Carlo simulation software to estimate the beam performance for the irradiation experiments.The parameters studied can be used as guidelines for machine operation and future experimental plans.