In this paper,we theoretically investigate the existence and propagation of low amplitude nonlinear ion waves in a dense plasma under the influence of a strong magnetic field.The plasma consists of ultra-relativistic ...In this paper,we theoretically investigate the existence and propagation of low amplitude nonlinear ion waves in a dense plasma under the influence of a strong magnetic field.The plasma consists of ultra-relativistic and degenerate electrons and positrons and non-degenerate cold ions.Firstly,the appearance of two distinct linear modes and their evolution is studied by deriving a dispersion equation with the aid of Fourier analysis.Secondly,the dynamics of low amplitude ion solitary structures is investigated via a Korteweg-de Vries equation derived by employing a reductive perturbation method.The effects of various plasma parameters like positron concentration,strength of magnetic field,obliqueness of field,etc.,are discussed in detail.At the end,analytical results are supplemented through numerical analysis by using typical representative parameters consistent with degenerate and ultra-relativistic magnetoplasmas of astrophysical regimes.展开更多
In order to further understand the characteristics of the floating potential of low earth orbit spacecraft,the effects of the electron current collection area,background electron temperature,photocurrent emission,spac...In order to further understand the characteristics of the floating potential of low earth orbit spacecraft,the effects of the electron current collection area,background electron temperature,photocurrent emission,spacecraft wake,and the shape of spacecraft on spacecraft floating potential were studied here by particle-in-cell simulation in the low earth orbit.The simulation results show that the electron current collection area and background electron temperature impact on the floating potential by changing the electron current collection of spacecraft.By increasing the electron current collection area or background electron temperature,the spacecraft will float at a lower electric potential with respect to the surrounding plasma.However,the spacecraft wake affects the floating potential by increasing the ion current collected by spacecraft.The emission of the photocurrent from the spacecraft surface,which compensates for the electrons collected from background plasma,causes the floating potential to increase.The shape of the spacecraft is also an important factor influencing the floating potential.展开更多
文摘In this paper,we theoretically investigate the existence and propagation of low amplitude nonlinear ion waves in a dense plasma under the influence of a strong magnetic field.The plasma consists of ultra-relativistic and degenerate electrons and positrons and non-degenerate cold ions.Firstly,the appearance of two distinct linear modes and their evolution is studied by deriving a dispersion equation with the aid of Fourier analysis.Secondly,the dynamics of low amplitude ion solitary structures is investigated via a Korteweg-de Vries equation derived by employing a reductive perturbation method.The effects of various plasma parameters like positron concentration,strength of magnetic field,obliqueness of field,etc.,are discussed in detail.At the end,analytical results are supplemented through numerical analysis by using typical representative parameters consistent with degenerate and ultra-relativistic magnetoplasmas of astrophysical regimes.
基金supported by National Natural Science Foundation of China(No.11105063)
文摘In order to further understand the characteristics of the floating potential of low earth orbit spacecraft,the effects of the electron current collection area,background electron temperature,photocurrent emission,spacecraft wake,and the shape of spacecraft on spacecraft floating potential were studied here by particle-in-cell simulation in the low earth orbit.The simulation results show that the electron current collection area and background electron temperature impact on the floating potential by changing the electron current collection of spacecraft.By increasing the electron current collection area or background electron temperature,the spacecraft will float at a lower electric potential with respect to the surrounding plasma.However,the spacecraft wake affects the floating potential by increasing the ion current collected by spacecraft.The emission of the photocurrent from the spacecraft surface,which compensates for the electrons collected from background plasma,causes the floating potential to increase.The shape of the spacecraft is also an important factor influencing the floating potential.