In this paper, we investigate a method of selectively enhancing the single mode signal of a Lamb wave by using a meander-coil electromagnetic acoustic transducer (EMAT) with a new magnetic configuration. We use the ...In this paper, we investigate a method of selectively enhancing the single mode signal of a Lamb wave by using a meander-coil electromagnetic acoustic transducer (EMAT) with a new magnetic configuration. We use the Lamb antisym- metric (A0) mode and symmetric (SO) mode as an example for analysis. The analytical expression of the magnitude of the spatial Fourier transform of the Lorentz force generated by different meander coils is used to determine the optimal driving frequency for single mode generation. The numerical calculation is used to characterize the new magnetic configuration and the conventional EMAT magnet. Experimental examinations of each meander coil in combination with the conventional and new magnetic configuration show that the Lamb wave signal can be selectively enhanced by choosing the appropriate driving frequency and coil parameters through using the improved meander-coil EMAT.展开更多
In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for wave...In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave's mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT's meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Larnb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT's geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs.展开更多
This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs i...This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied.展开更多
Using periodic permanent magnet(PPM)electromagnetic acoustic transducers(EMATs),different shear horizontal(SH)guided wave modes can form simultaneously in some situations,which can interfere with the inspection.The ma...Using periodic permanent magnet(PPM)electromagnetic acoustic transducers(EMATs),different shear horizontal(SH)guided wave modes can form simultaneously in some situations,which can interfere with the inspection.The main cause of this phenomenon(typically named multiple modes)is related to the frequency bandwidth of excitation signals and the transducer spatial bandwidth.Simply narrowing the frequency bandwidth cannot effectively limit the number of different SH modes.Previous researches showed that unnecessary SH wave modes can be eliminated by using dual EMATs.However,in practical applications,it is more convenient to change the excitation frequency than to use dual EMATs.In this paper,the stress boundary conditions of the PPM-EMAT are analyzed,the analytical expression of SH guided wave is established,and the magnitude of SH guided wave mode under continuous tone and tone-burst input is obtained.A method to generate a single SH mode by re-selecting an operating point is proposed.Furthermore,the influence of the frequency bandwidth of the tone-burst signal is analyzed.Finally,a single SH mode excitation is achieved with tone-burst input.展开更多
电磁超声换能器(EMAT)中电磁场及洛伦兹力的计算多采用有限元仿真,其运算量大且计算时间长;且已提出的EMAT解析模型未考虑换能器的关键部件,即永磁体;也没有推导其激发的三维非均匀静态磁场解析表达式,导致洛伦兹力的计算结果精度低。对...电磁超声换能器(EMAT)中电磁场及洛伦兹力的计算多采用有限元仿真,其运算量大且计算时间长;且已提出的EMAT解析模型未考虑换能器的关键部件,即永磁体;也没有推导其激发的三维非均匀静态磁场解析表达式,导致洛伦兹力的计算结果精度低。对此,本文基于ETREE(Extended Truncated Region Eigenfunction Expansion)解析法对EMAT进行数学建模,模型中引入了永磁体及其所激发的三维非均匀静态磁场,推导了EMAT的电磁场及洛伦兹力理论表达式。通过与有限元仿真的对比发现,采用本文提出的EMAT解析模型计算得到的电磁场及洛伦兹力与有限元仿真结果吻合很好,且解析求解计算耗时极少,从而验证了此方法的准确性和高效性。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51507171 and 51577184)
文摘In this paper, we investigate a method of selectively enhancing the single mode signal of a Lamb wave by using a meander-coil electromagnetic acoustic transducer (EMAT) with a new magnetic configuration. We use the Lamb antisym- metric (A0) mode and symmetric (SO) mode as an example for analysis. The analytical expression of the magnitude of the spatial Fourier transform of the Lorentz force generated by different meander coils is used to determine the optimal driving frequency for single mode generation. The numerical calculation is used to characterize the new magnetic configuration and the conventional EMAT magnet. Experimental examinations of each meander coil in combination with the conventional and new magnetic configuration show that the Lamb wave signal can be selectively enhanced by choosing the appropriate driving frequency and coil parameters through using the improved meander-coil EMAT.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474361 and 11274388)
文摘In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave's mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT's meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Larnb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT's geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974115)
文摘This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied.
基金Project supported by the National Natural Science Foundation of China(Grant No.51977044).
文摘Using periodic permanent magnet(PPM)electromagnetic acoustic transducers(EMATs),different shear horizontal(SH)guided wave modes can form simultaneously in some situations,which can interfere with the inspection.The main cause of this phenomenon(typically named multiple modes)is related to the frequency bandwidth of excitation signals and the transducer spatial bandwidth.Simply narrowing the frequency bandwidth cannot effectively limit the number of different SH modes.Previous researches showed that unnecessary SH wave modes can be eliminated by using dual EMATs.However,in practical applications,it is more convenient to change the excitation frequency than to use dual EMATs.In this paper,the stress boundary conditions of the PPM-EMAT are analyzed,the analytical expression of SH guided wave is established,and the magnitude of SH guided wave mode under continuous tone and tone-burst input is obtained.A method to generate a single SH mode by re-selecting an operating point is proposed.Furthermore,the influence of the frequency bandwidth of the tone-burst signal is analyzed.Finally,a single SH mode excitation is achieved with tone-burst input.
文摘电磁超声换能器(EMAT)中电磁场及洛伦兹力的计算多采用有限元仿真,其运算量大且计算时间长;且已提出的EMAT解析模型未考虑换能器的关键部件,即永磁体;也没有推导其激发的三维非均匀静态磁场解析表达式,导致洛伦兹力的计算结果精度低。对此,本文基于ETREE(Extended Truncated Region Eigenfunction Expansion)解析法对EMAT进行数学建模,模型中引入了永磁体及其所激发的三维非均匀静态磁场,推导了EMAT的电磁场及洛伦兹力理论表达式。通过与有限元仿真的对比发现,采用本文提出的EMAT解析模型计算得到的电磁场及洛伦兹力与有限元仿真结果吻合很好,且解析求解计算耗时极少,从而验证了此方法的准确性和高效性。