期刊文献+
共找到480篇文章
< 1 2 24 >
每页显示 20 50 100
A facile finger-paint physical modification for bilateral electrode/electrolyte interface towards a stable aqueous Zn battery 被引量:1
1
作者 Hang Yang Duo Chen +6 位作者 Yicheng Tan Hao Xu Li Li Yiming Zhang Chenglin Miao Guangshe Li Wei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期101-109,I0004,共10页
Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint met... Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint method is proposed to enable quick physical modification of glass-fiber separator without complicated chemical technology to modulate EEI of bilateral electrodes for aqueous zinc-ion batteries(ZIBs).An elaborate biochar derived from Aspergillus Niger is exploited as the modification agent of EEI,in which the multi-functional groups assist to accelerate Zn^(2+)desolvation and create a hydrophobic environment to homogenize the deposition behavior of Zn anode.Importantly,the finger-paint interface on separator can effectively protect cathodes from abnormal capacity fluctuation and/or rapid attenuation induced by H_(2)O molecular on the interface,which is demonstrated in modified MnO_(2),V_(2)O_(5),and KMn HCF-based cells.The as-proposed finger-paint method opens a new idea of bilateral interface engineering to facilitate the access to the practical application of the stable zinc electrochemistry. 展开更多
关键词 Aqueous Zinc battery electrode/electrolyte interface interface modification MnO_(2) V_(2)O_(5) KMnHCF
在线阅读 下载PDF
Unlocking the stable interface in aqueous zinc-ion battery with multifunctional xylose-based electrolyte additives
2
作者 Xiaoqin Li Jian Xiang +9 位作者 Lu Qiu Xiaohan Chen Yinkun Zhao Yujue Wang Qu Yue Taotao Gao Wenlong Liu Dan Xiao Zhaoyu Jin Panpan Li 《Journal of Energy Chemistry》 2025年第1期770-778,共9页
The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries(AZIBs). These challenges arise from the inherent conflict betwe... The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries(AZIBs). These challenges arise from the inherent conflict between mass transfer and electrochemical kinetics. In this study, we propose the use of a multifunctional electrolyte additive based on the xylose(Xylo) molecule to address these issues by modulating the solvation structure and electrode/electrolyte interface, thereby stabilizing the Zn anode. The introduction of the additive alters the solvation structure, creating steric hindrance that impedes charge transfer and then reduces electrochemical kinetics. Furthermore, in-situ analyses demonstrate that the reconstructed electrode/electrolyte interface facilitates stable and rapid Zn^(2+)ion migration and suppresses corrosion and hydrogen evolution reactions. As a result, symmetric cells incorporating the Xylo additive exhibit significantly enhanced reversibility during the Zn plating/stripping process, with an impressively long lifespan of up to 1986 h, compared to cells using pure ZnSO4electrolyte. When combined with a polyaniline cathode, the full cells demonstrate improved capacity and long-term cyclic stability. This work offers an effective direction for improving the stability of Zn anode via electrolyte design, as well as highperformance AZIBs. 展开更多
关键词 Aqueous Zn-ion battery electrolyte additive Solvation structure electrode/electrolyte interface Zn anode
在线阅读 下载PDF
Designing Conformal Electrode-electrolyte Interface by Semi-solid NaK Anode for Sodium Metal Batteries
3
作者 YIN Chunsen CHEN Zeyuan WANG Xiuli 《材料科学与工程学报》 CAS CSCD 北大核心 2024年第4期533-543,共11页
Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interf... Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of NaK alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the intimate contact of electrode-electrolyte interface.Additionally,the filling of SiO_(2)nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 h.The full cell coupled with Na_(3)V_(3)(PO_(4))_(2)cathodes had an initial discharge capacity of 106.8 mAh·g^(-1)with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1)even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode. 展开更多
关键词 Solid-state Na metal battery NaK alloy Gel electrolyte electrode-electrolyte interface dendrite free anode
在线阅读 下载PDF
Electrode/Electrolyte Optimization‑Induced Double‑Layered Architecture for High‑Performance Aqueous Zinc‑(Dual)Halogen Batteries
4
作者 Chengwang Zhou Zhezheng Ding +7 位作者 Shengzhe Ying Hao Jiang Yan Wang Timing Fang You Zhang Bing Sun Xiao Tang Xiaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期121-137,共17页
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt... Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries. 展开更多
关键词 Zn metal anodes Double-layered protective film electrode/electrolyte optimization Aqueous zinc-(dual)halogen batteries
在线阅读 下载PDF
High-temperature-tolerant flexible supercapacitors: Gel polymer electrolytes and electrode materials
5
作者 Chong Peng Xinyi Huang +4 位作者 Mingwei Zhao Shuling Liao Quanhong Yang Nianjun Yang Siyu Yu 《Journal of Energy Chemistry》 2025年第1期426-457,共32页
The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and elec... The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and electrode materials stand as two key components that significantly impact the efficacy of hightemperature-tolerant FSCs(HT-FSCs). They should not only exhibit high electrochemical performance and excellent flexibility, but also withstand intense thermal stress. Considerable efforts have been devoted to enhancing their thermal stability while maintaining high electrochemical and mechanical performance. In this review, the fundamentals of HT-FSCs are outlined. A comprehensive overview of state-of-the-art progress and achievements in HT-FSCs, with a focus on thermally stable gel polymer electrolytes and electrode materials is provided. Finally, challenges and future perspectives regarding HT-FSCs are discussed, alongside strategies for elevating operational temperatures and performance.This review offers both theoretical foundations and practical guidelines for designing and manufacturing HT-FSCs, further promoting their widespread adoption across diverse fields. 展开更多
关键词 Flexible supercapacitors High-temperature tolerance Gel polymer electrolytes electrode materials
在线阅读 下载PDF
Interface compatibility between sulfide solid electrolytes and Ni-rich oxide cathode materials:Factors,modification,perspectives
6
作者 Tianwen Yang Haijuan Pei +3 位作者 Haijian Lv Shijie Lu Qi Liu Daobin Mu 《Journal of Energy Chemistry》 2025年第2期233-262,I0006,共31页
All-solid-state batteries(ASSBs)assembled with sulfide solid electrolytes(SSEs)and nickel(Ni)-rich oxide cathode materials are expected to achieve high energy density and safety,representing potential candidates for t... All-solid-state batteries(ASSBs)assembled with sulfide solid electrolytes(SSEs)and nickel(Ni)-rich oxide cathode materials are expected to achieve high energy density and safety,representing potential candidates for the next-generation energy storage systems.However,interfacial issues between SSEs and Nirich oxide cathode materials,attributed to space charge layer,interfacial side reactions,and mechanical contact failure,significantly restrict the performances of ASSBs.The interface degradation is closely related to the components of the composite cathode and the process of electrode fabrication.Focusing on the influencing factors of interface compatibility between SSEs and Ni-rich oxide cathode,this article systematically discusses how cathode active materials(CAMs),electrolytes,conductive additives,binders,and electrode fabrication impact the interface compatibility.In addition,the strategies for the compatibility modification are reviewed.Furthermore,the challenges and prospects of intensive research on the degradation and modification of the SSE/Ni-rich cathode material interface are discussed.This review is intended to inspire the development of high-energy-density and high-safety all-solid-state batteries. 展开更多
关键词 Sulfide solid electrolyte Ni-rich oxide cathode interface compatibility Influencing factors All-solid-state batteries
在线阅读 下载PDF
Investigation of polysulfone film on high-performance anode with stabilized electrolyte/electrode interface for lithium batteries 被引量:2
7
作者 Yuyan Ma Chen Dong +5 位作者 Qiuli Yang Yuxin Yin Xiaoping Bai Shuying Zhen Cheng Fan Kening Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期49-55,共7页
Lithium metal has been considered to be the most promising anode material for the new generation of energy-storage system.However,challenges still stand in protecting lithium metal from spontaneous reactions with elec... Lithium metal has been considered to be the most promising anode material for the new generation of energy-storage system.However,challenges still stand in protecting lithium metal from spontaneous reactions with electrolytes and preventing the dendritic propagation,both of which would lead to undesirable decrease in Coulombic efficiency.Polysulfone(PSf)membrane with high rigidity and free-volume cavities of approximately 0.3 nm was employed to provide a stable interface on the surface of anodic electrode.The isotropic channels were constructed by the interconnected and uniformly distributed free volumes in the polymer matrix,and were expected to be swelled by solvent molecules and anions of lithium salt and to allow Li+ions to pass through onto the electrode surface.As a result,dendrite-free morphology of deposited lithium was observed.The stabilized interface arose from the PSf film was verified by the promoted performances of Cu|Li cells and steady voltage polarization of Li|Li cells.The full cell with PSf coated anode exhibited excellent cyclability(85%capacity retention rate over 400 cycles at 1C)and an outstanding rate capability(117 m Ah g-1 at 5C).The beneficial performances were further verified by the EIS results.This work provides a new strategic idea to settle the dendritic problems of Li metal anodes. 展开更多
关键词 Lithium metal electrolyte/electrode interface Dendrite-free POLYSULFONE Free volume
在线阅读 下载PDF
In-situ physical/chemical cross-linked hydrogel electrolyte achieving ultra-stable zinc anode-electrolyte interface towards dendrite-free zinc ion battery
8
作者 Chen-Yang Li Jiang-Lin Wang +7 位作者 Dong-Ting Zhang Min-Peng Li Hao Chen Wei-Hai Yi Xin-Ying Ren Bao Liu Xue-Feng Lu Mao-Cheng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期342-351,I0007,共11页
Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked ... Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries. 展开更多
关键词 In-suit CPZ hydrogel electrolyte Hydrogen evolution reaction and zinc corrosion Dendrites growth Zinc anode-electrolyte interface Zn ion batteries
在线阅读 下载PDF
Single-Entity Collisional Electrochemistry at the Micro-and/or Nano-Interface Between Two Immiscible Electrolyte Solutions
9
作者 Li-Fang Yang Jun-Jie Chen +7 位作者 Ling-Yu Chen Si-Qi Jin Tao-Xiong Fang Si-Jia He Liang-Jun Shen Xin-Jian Huang Xiao-Hang Sun Hai-Qiang Deng 《电化学(中英文)》 CAS 北大核心 2024年第11期1-16,I0001,共17页
Single-entity collisional electrochemistry(SECE)is a branch of single-entity electrochemistry.It can directly characterize entities/particles with single particle resolution through random collisions between particles... Single-entity collisional electrochemistry(SECE)is a branch of single-entity electrochemistry.It can directly characterize entities/particles with single particle resolution through random collisions between particles and electrodes in a solution,and obtain rich physicochemical information,thus becoming one of the frontiers of electroanalytical chemistry in the past two decades.Interestingly,the(micro/nanoscale)sensing electrodes have evolved from a polarizable liquid/liquid(mercury/liquid)interface to a solid/liquid interface and then to a liquid/liquid interface(i.e.,an interface between twoimmiscible electrolyte solutions,ITIES),as if they have completed a cycle(but in fact they have not).ITIES has become the latest sensing electrode in the booming SECE due to its polarizability(up to 1.1 V at the water/a,a,a-trifluorotoluene interface)and high reproducibility.The four measurement modes(direct electrolysis,mediated electrolysis,current blockade,and charge displacement)developed in the realm of SECE at solid/liquid interfaces have also been fully realized at the miniature ITIES.This article will discuss these four modes at the ITIES from the perspectives of basic concepts,operating mechanisms,and latest developments(e.g.,discovery of ionosomes,blockade effect of Faradaic ion transfer,etc.),and look forward to the future development and direction of this emerging field. 展开更多
关键词 Single-entity collisional electrochemistry interface between two immiscible electrolyte solutions Charge transfer
在线阅读 下载PDF
Molecule‑Level Multiscale Design of Nonflammable Gel Polymer Electrolyte to Build Stable SEI/CEI for Lithium Metal Battery
10
作者 Qiqi Sun Zelong Gong +13 位作者 Tao Zhang Jiafeng Li Xianli Zhu Ruixiao Zhu Lingxu Wang Leyuan Ma Xuehui Li Miaofa Yuan Zhiwei Zhang Luyuan Zhang Zhao Qian Longwei Yin Rajeev Ahuja Chengxiang Wang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期404-423,共20页
The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious int... The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode. 展开更多
关键词 Anchoring effect Nonflammable gel electrolyte In situ cross-linked electrode-electrolyte interface Li metal battery
在线阅读 下载PDF
Dual-phase interface engineering via parallel modulation strategy for highly reversible Zn metal batteries
11
作者 Zhean Bao Yang Wang +6 位作者 Kun Zhang Guosheng Duan Leilei Sun Sinan Zheng Bin Luo Zhizhen Ye Jingyun Huang 《Journal of Energy Chemistry》 2025年第2期163-174,I0005,共13页
The reversibility and stability of aqueous Zn metal batteries(AZMBs)are largely limited by Zn dendrites and interfacial parasitic reactions.Herein,we propose a parallel modulation strategy to boost the reversibility o... The reversibility and stability of aqueous Zn metal batteries(AZMBs)are largely limited by Zn dendrites and interfacial parasitic reactions.Herein,we propose a parallel modulation strategy to boost the reversibility of the Zn anode by introducing N,N,N',N'-tetramethylchloroformamidinium hexafluorophosphate(TCFH)as an additive in the electrolyte.TCFH is composed of PF6-and TN+with opposite charges.PF6-can spontaneously induce the in-situ generation of ZnF_(2)solid electrolyte interface(SEI)on the anode,which can improve the transport kinetics of Zn^(2+)at the interface,thus promoting the rapid and uniform deposition of Zn as well as inhibiting the growth of dendrites.In addition,TN+is enriched at the anode surface during Zn deposition through the anchoring effect,which brings a reconfiguration of the ion/molecule distribution.The anchored-TN+reduces the concentrations of H_(2)O and SO_(4)^(2-),sufficiently restraining the parasitic reaction.Thanks to the dual-phase interface engineering constructed of PF6-and TN+in parallel,the symmetric cell with the proposed electrolyte survives long cycling stability over750 h at 20 mA cm^(-2),10 mAh cm^(-2).This study offers a distinct viewpoint to the multidimensional optimization of Zn anodes for high-performance AZMBs. 展开更多
关键词 Aqueous Znmetal batteries electrolyte additive Zn anode Solid electrolyte interface Anchoring effect
在线阅读 下载PDF
Half-Covered'Glitter-Cake'AM@SE Composite:A Novel Electrode Design for High Energy Density All-Solid-State Batteries
12
作者 Min Ji Kim Jin-Sung Park +8 位作者 Jin Woong Lee Sung Eun Wang Dowoong Yoon Jong Deok Lee Jung Hyun Kim Taeseup Song Ju Li Yun Chan Kang Dae Soo Jung 《Nano-Micro Letters》 2025年第5期463-478,共16页
All-solid-state batteries(ASSBs)are pursued due to their potential for better safety and high energy density.However,the energy density of the cathode for ASSBs does not seem to be satisfactory due to the low utilizat... All-solid-state batteries(ASSBs)are pursued due to their potential for better safety and high energy density.However,the energy density of the cathode for ASSBs does not seem to be satisfactory due to the low utilization of active materials(AMs)at high loading.With small amount of solid electrolyte(SE)powder in the cathode,poor electrochemical performance is often observed due to contact loss and non-homogeneous distribution of AMs and SEs,leading to high tortuosity and limitation of lithium and electron transport pathways.Here,we propose a novel cathode design that can achieve high volumetric energy density of 1258 Wh L^(-1)at high AM content of 85 wt%by synergizing the merits of AM@SE core–shell composite particles with conformally coated thin SE shell prepared from mechanofusion process and small SE particles.The core–shell structure with an intimate and thin SE shell guarantees high ionic conduction pathway while unharming the electronic conduction.In addition,small SE particles play the role of a filler that reduces the packing porosity in the cathode composite electrode as well as between the cathode and the SE separator layer.The systematic demonstration of the optimization process may provide understanding and guidance on the design of electrodes for ASSBs with high electrode density,capacity,and ultimately energy density. 展开更多
关键词 All-solid-state batteries Cathodes Sulfide-based solid electrolytes interfaces Mechanofusion
在线阅读 下载PDF
Interfacial fusion-enhanced 11 μm-thick gel polymer electrolyte for high-performance lithium metal batteries
13
作者 Ying Jiang Xinyue Hong +3 位作者 Peng Huang Jing Shi Wen Yan Chao Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期58-66,共9页
In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herei... In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries. 展开更多
关键词 Ultrathin gel polymer electrolyte Integrated electrode/electrolyte structure Quasi-solid-state lithium metal battery Solid-electrolyte interphase
在线阅读 下载PDF
Electrode-compatible fluorine-free multifunctional additive regulating solid electrolyte interphase and solvation structure for high-performance lithium-ion batteries 被引量:3
14
作者 Qing-Song Liu Yi-Zhou Quan +4 位作者 Mei-Chen Liu Guo-Rui Zhu Xiu-Li Wang Gang Wu Yu-Zhong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期239-246,I0008,共9页
The rapid development and widespread application of lithium-ion batteries(LIBs) have increased demand for high-safety and high-performance LIBs. Accordingly, various additives have been used in commercial liquid elect... The rapid development and widespread application of lithium-ion batteries(LIBs) have increased demand for high-safety and high-performance LIBs. Accordingly, various additives have been used in commercial liquid electrolytes to severally adjust the solvation structure of lithium ions, control the components of solid electrolyte interphase, or reduce flammability. While it is highly desirable to develop low-cost multifunctional electrolyte additives integrally that address both safety and performance on LIBs, significant challenges remain. Herein, a novel phosphorus-containing organic small molecule, bis(2-methoxyethyl) methylphosphonate(BMOP), was rationally designed to serve as a fluorine-free and multifunctional additive in commercial electrolytes. This novel electrolyte additive is low-toxicity,high-efficiency, low-cost, and electrode-compatible, which shows the significant improvement to both electrochemical performance and fire safety for LIBs through regulating the electrolyte solvation structure, constructing the stable electrode-electrolyte interphase, and suppressing the electrolyte combustion. This work provides a new avenue for developing safer and high-performance LIBs. 展开更多
关键词 Multifunctional additives electrode compatibility Solid electrolyte interface Solvation structure Lithium-ion batteries
在线阅读 下载PDF
Multiscale modeling of electrolytes in porous electrode:From equilibrium structure to non-equilibrium transport 被引量:8
15
作者 Haolan Tao Cheng Lian Honglai Liu 《Green Energy & Environment》 SCIE CSCD 2020年第3期303-321,共19页
Understanding the mechanisms and properties of various transport processes in the electrolyte,porous electrode,and at the interface between electrode and electrolyte plays a crucial role in guiding the improvement of ... Understanding the mechanisms and properties of various transport processes in the electrolyte,porous electrode,and at the interface between electrode and electrolyte plays a crucial role in guiding the improvement of electrolytes,materials and microstructures of electrode.Nanoscale equilibrium properties and nonequilibrium ion transport are substantially different to that in the bulk,which are difficult to observe from experiments directly.In this paper,we introduce equilibrium and no-equilibrium thermodynamics for electrolyte in porous electrodes or electrolyte-electrode interface.The equilibrium properties of electrical double layer(EDL)including the EDL structure and capacitance are discussed.In addition,classical non-equilibrium thermodynamic theory is introduced to help us understand the coupling effect of different transport processes.We also review the recent studies of nonequilibrium ion transport in porous electrode by molecular and continuum methods,among these methods,dynamic density functional theory(DDFT)shows tremendous potential as its high efficiency and high accuracy.Moreover,some opportunities for future development and application of the non-equilibrium thermodynamics in electrochemical system are prospected. 展开更多
关键词 Nonequilibrium transport electrolytes Porous electrodes Dynamic density functional theory
在线阅读 下载PDF
Solid Electrolyte Interface in Zn-Based Battery Systems 被引量:7
16
作者 Xinyu Wang Xiaomin Li +1 位作者 Huiqing Fan Longtao Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期286-309,共24页
Due to its high theoretical capacity(820 mAh g^(−1)),low standard electrode potential(−0.76 V vs.SHE),excellent stability in aqueous solutions,low cost,environmental friendliness and intrinsically high safety,zinc(Zn)... Due to its high theoretical capacity(820 mAh g^(−1)),low standard electrode potential(−0.76 V vs.SHE),excellent stability in aqueous solutions,low cost,environmental friendliness and intrinsically high safety,zinc(Zn)-based batteries have attracted much attention in developing new energy storage devices.In Zn battery system,the battery performance is significantly affected by the solid electrolyte interface(SEI),which is controlled by electrode and electrolyte,and attracts dendrite growth,electrochemical stability window range,metallic Zn anode corrosion and passivation,and electrolyte mutations.Therefore,the design of SEI is decisive for the overall performance of Zn battery systems.This paper summarizes the formation mechanism,the types and characteristics,and the characterization techniques associated with SEI.Meanwhile,we analyze the influence of SEI on battery performance,and put forward the design strategies of SEI.Finally,the future research of SEI in Zn battery system is prospected to seize the nature of SEI,improve the battery performance and promote the large-scale application. 展开更多
关键词 Solid electrolyte interface Zn-based battery Solvated structure Artificial SEI In situ SEI
在线阅读 下载PDF
Building Ultra-Stable and Low-Polarization Composite Zn Anode Interface via Hydrated Polyzwitterionic Electrolyte Construction 被引量:4
17
作者 Qiong He Guozhao Fang +8 位作者 Zhi Chang Yifang Zhang Shuang Zhou Miao Zhou Simin Chai Yue Zhong Guozhong Cao Shuquan Liang Anqiang Pan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第6期99-115,共17页
Aqueous zinc metal batteries are noted for their costeffectiveness,safety and environmental friendliness.However,the water-induced notorious issues such as continuous electrolyte decomposition and uneven Zn electroche... Aqueous zinc metal batteries are noted for their costeffectiveness,safety and environmental friendliness.However,the water-induced notorious issues such as continuous electrolyte decomposition and uneven Zn electrochemical deposition remarkably restrict the development of the long-life zinc metal batteries.In this study,zwitterionic sulfobetaine is introduced to copolymerize with acrylamide in zinc perchlorate(Zn(ClO;);)solution.The designed gel framework with hydrophilic and charged groups can firmly anchor water molecules and construct ion migration channels to accelerate ion transport.The in situ generated hybrid interface,which is composed of the organic functionalized outer layer and inorganic Clcontaining inner layer,can synergically lower the mass transfer overpotential,reduce water-related side reactions and lead to uniform Zn deposition.Such a novel electrolyte configuration enables Zn//Zn cells with an ultra-long cycling life of over 3000 h and a low polarization potential(~0.03 V)and Zn//Cu cells with high Coulombic efficiency of 99.18%for 1000 cycles.Full cells matched with MnO;cathodes delivered laudable cycling stability and impressive shelving ability.Besides,the flexible quasi-solid-state batteries which are equipped with the anti-vandalism ability(such as cutting,hammering and soaking)can successfully power the LED simultaneously.Such a safe,processable and durable hydrogel promises significant application potential for long-life flexible electronic devices. 展开更多
关键词 Quasi-solid electrolyte interface Polyzwitterionic hydrogel electrolytes High performance Manganese dioxides Zinc metal anodes
在线阅读 下载PDF
A critical review on composite solid electrolytes for lithium batteries:Design strategies and interface engineering 被引量:3
18
作者 Tianqi Yang Cheng Wang +7 位作者 Wenkui Zhang Yang Xia Hui Huang Yongping Gan Xinping He Xinhui Xia Xinyong Tao Jun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期189-209,共21页
The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the curren... The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs. 展开更多
关键词 Inorganic solid electrolytes Polymer solid electrolytes Composite solid electrolytes interface engineering
在线阅读 下载PDF
Protective electrode/electrolyte interphases for high energy lithium-ion batteries with p-toluenesulfonyl fluoride electrolyte additive 被引量:5
19
作者 Yanxia Che Xiuyi Lin +6 位作者 Lidan Xing Xiongcong Guan Rude Guo Guangyuan Lan Qinfeng Zheng Wenguang Zhang Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期361-371,I0012,共12页
High energy density lithium-ion batteries using Ni-rich cathode(such as LiNi0.6Co0.2Mn0.2O2) suffer from severe capacity decay.P-toluenesulfonyl fluoride(pTSF) has been investigated as a novel film-forming electrolyte... High energy density lithium-ion batteries using Ni-rich cathode(such as LiNi0.6Co0.2Mn0.2O2) suffer from severe capacity decay.P-toluenesulfonyl fluoride(pTSF) has been investigated as a novel film-forming electrolyte additive to enhance the cycling performances of graphite/LiNi0.6Co0.2Mn0.2O2 pouch cell.In comparison with the baseline electrolyte,a small dose of pTSF can significantly improve the cyclic stability of the cell.Theoretical calculations together with experimental results indicate that pTSF would be oxidized and reduced to construct protective interphase film on the surfaces of LiNi0.6Co0.2Mn0.2O2 cathode and graphite anode,respectively.These S-containing surface films derived from pTSF effectively mitigate the decomposition of electrolyte,reduce the interphasial impedance,as well as prevent the dissolution of transition metal ions from Ni-rich cathode upon cycling at high voltage.This finding is beneficial for the practical application of high energy density graphite/LiNi0.6Co0.2Mn0.2O2 cells. 展开更多
关键词 Lithium-ion batteries electrolyte additive P-toluenesulfonyl fluoride electrode/electrolyte interphase Graphite/LiNi0.6Co0.2Mn0.2O2
在线阅读 下载PDF
Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives 被引量:2
20
作者 Fangrong Hu Mingyang Zhang +11 位作者 Wenbin Qi Jieyun Zheng Yue Sun Jianyu Kang Hailong Yu Qiyu Wang Shijuan Chen Xinhua Sun Baogang Quan Junjie Li Changzhi Gu Hong Li 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期648-656,共9页
The 100 crystal-oriented silicon micropillar array platforms were prepared by microfabrication processes for the purpose of electrolyte additive identification. The silicon micropillar array platform was used for the ... The 100 crystal-oriented silicon micropillar array platforms were prepared by microfabrication processes for the purpose of electrolyte additive identification. The silicon micropillar array platform was used for the study of fluorinated vinyl carbonate(FEC), vinyl ethylene carbonate(VEC), ethylene sulfite(ES), and vinyl carbonate(VC) electrolyte additives in the LiPF_6 dissolved in a mixture of ethylene carbonate and diethyl carbonate electrolyte system using charge/discharge cycles, electrochemical impedance spectroscopy, cyclic voltammetry, scanning electron microscopy, and x-ray photoelectron spectroscopy. The results show that the silicon pillar morphology displays cross-shaped expansion after lithiation/delithiation, the inorganic lithium salt keeps the silicon pillar morphology intact, and the organic lithium salt content promotes a rougher silicon pillar surface. The presence of poly-(VC) components on the surface of FEC and VC electrodes allows the silicon pillar to accommodate greater volume expansion while remaining intact. This work provides a standard, fast, and effective test method for the performance analysis of electrolyte additives and provides guidance for the development of new electrolyte additives. 展开更多
关键词 lithium-ion batteries solid electrolyte interphases electrolyte additives silicon micropillar electrodes
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部