A compact electro-absorption modulator based on graphene photonic crystal fiber is proposed. To enhance the graphene–light interaction efficiency, the innermost six air-holes of photonic crystal fiber are replaced by...A compact electro-absorption modulator based on graphene photonic crystal fiber is proposed. To enhance the graphene–light interaction efficiency, the innermost six air-holes of photonic crystal fiber are replaced by two large semicircular holes, and monolayer graphene is deposited on the two large semicircular holes. By optimizing the structure parameters, a strong graphene–light interaction is obtained. Moreover, the switch on–off point of the modulator is unchangeable,which is only related to the frequency of the incident light. The influence factors of this composite structure have been analyzed. The proposed modulator is compared with other graphene-based modulators, and the results show that it is filled without dielectric spacer. There are some excellent performances, such as an extinction ratio 7 dB of y-polarization mode,3-dB modulation bandwidth of 70 GHz with small footprint of 205 μm, and a consumption of energy per bit 59 pJ/bit.展开更多
We report the simulation and experimental results of 1.3-μm InGaAsP/InP multiple quantum well (MQW) electro-absorption modulators (EAMs). In this work, the quantum confined Stark effect of the EAM is system- atic...We report the simulation and experimental results of 1.3-μm InGaAsP/InP multiple quantum well (MQW) electro-absorption modulators (EAMs). In this work, the quantum confined Stark effect of the EAM is system- atically analyzed through the finite element method. An optimized structure of the 1.3-μm InGaAsP/InP QW EAM is proposed for applications in 100 G ethernet. Then 1.3-μm InGaAsP/InP EAMs with f-3dB bandwidth of over 20 GHz and extinction ratio over 20 dB at 3 V bias voltage are demonstrated.展开更多
A theoretical study on the red-shift of laser-induced electro-absorption is presented. It is found that laser-induced red-shift scales with the cube root of the pump laser intensity in the optical tunneling regime and...A theoretical study on the red-shift of laser-induced electro-absorption is presented. It is found that laser-induced red-shift scales with the cube root of the pump laser intensity in the optical tunneling regime and has an obvious deviation from this scale in the multi-photon regime. Our results show that in the optical tunneling regime, the laser-induced red shift has the same law as that in the direct current (DC) approximation. Though the scales are the same in the optical tunneling regime, the physical pictures in the two cases are quite different. The electro-absorption in the DC case is a tunneling-assisted transition process, while the laser-induced electro-absorption is a mixed multi-photon process.展开更多
An electro-absorption(EA)modulator is one of key components for optical fiber communications due to the high speed,small size,low voltage and integration ability with other semiconductor devices.A 40 Gb/s InGaAsP/InP ...An electro-absorption(EA)modulator is one of key components for optical fiber communications due to the high speed,small size,low voltage and integration ability with other semiconductor devices.A 40 Gb/s InGaAsP/InP multiplequantum-well(MQW)EA modulator monolithically integrated with a semiconductor optical amplifier(SOA)was fabricated for digital communications.The modulator capacitance was reduced to obtain 40 GHz bandwidth,and the SOA section helped reduce the insertion loss from 18 dB to 3 dB.InGaAlAs/InP MQW EA modulators have also been fabricated and characterized for analog optical fiber communications.A low driving voltage of 2.7 V and high spurious free dynamic range of 107 dB·Hz2/3 were estimated by static and dynamic measurements.展开更多
A theoretical study for femtosecond laser-induced ultrafast electro-absorption of bulk solids is presented.Our numerical results show that,in the case of low intensity of the pump laser where the interaction between t...A theoretical study for femtosecond laser-induced ultrafast electro-absorption of bulk solids is presented.Our numerical results show that,in the case of low intensity of the pump laser where the interaction between the pump laser and solids is in the multi-photon regime,the energy band of solids can be approximately taken as a parabolic band and electro-absorption spectrums from the parabolic band and real band are nearly the same.While,in the case of high intensity where the interaction is in the tunneling regime,spectrums from the parabolic band and real band are quite different.The physical mechanism for the difference in the tunneling regime is found.We find that the non-parabolic parts of the real energy band and Bragger scattering of electrons near the first Brillouin zone boundaries,which are neglected in previous studies,strongly influence the electro-absorption spectrum in the tunneling regime.These two physical processes cause the difference of spectrums.Our theoretical results are in accordance with the experiment result.展开更多
Integrated electro-absorption-modulated distributed feedback laser diodes(EMLs)are attracting much interest in optical communications for the advantages of a compact structure,low power consumption,and high-speed modu...Integrated electro-absorption-modulated distributed feedback laser diodes(EMLs)are attracting much interest in optical communications for the advantages of a compact structure,low power consumption,and high-speed modulation.In integrated EML,the microwave interaction between the distributed feedback laser diode(DFB-LD)and the electro-absorption modulator(EAM)has a nonnegligible influence on the modulation performance,especially at the high-frequency region.In this paper,integrated EML was investigated as a three-port network with two electrical inputs and a single optical output,where the scattering matrix of the integrated device was theoretically deduced and experimentally measured.Based on the theoretical model and the measured data,the microwave equivalent circuit model of the integrated device was established,from which the microwave interaction between DFB-LD and EAM was successfully extracted.The results reveal that the microwave interaction within integrated EML contains both the electrical isolation and optical coupling.The electrical isolation is bidirectional while the optical coupling is directional,which aggravates the microwave interaction in the direction from DFB-LD to EAM.展开更多
This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption m...This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption modulator based on a multimode waveguide structure. By simulation, both electroabsorption modulator and photodiode show excellent optical performances. The device can be fabricated with conventional photolithography, reactive ion etching, and chemical wet etching.展开更多
A theoretical model of the refractive index changes of the TE and TM modes in an electro-absorption modulator (EAM) is deduced. The photon absorption and refractive index changes are analyzed numerically. The influe...A theoretical model of the refractive index changes of the TE and TM modes in an electro-absorption modulator (EAM) is deduced. The photon absorption and refractive index changes are analyzed numerically. The influence of pump intensity on the phase difference between the TE and TM modes is studied. The polarization rotation effect is obtained in the EAM, and a novel all-optical fiber loop buffer is designed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575170 and 61675176)the Key Basic Research Program of Hebei Province,China(Grant No.16961701D)the“Xin Rui Gong Cheng”Talent Project of Yanshan University。
文摘A compact electro-absorption modulator based on graphene photonic crystal fiber is proposed. To enhance the graphene–light interaction efficiency, the innermost six air-holes of photonic crystal fiber are replaced by two large semicircular holes, and monolayer graphene is deposited on the two large semicircular holes. By optimizing the structure parameters, a strong graphene–light interaction is obtained. Moreover, the switch on–off point of the modulator is unchangeable,which is only related to the frequency of the incident light. The influence factors of this composite structure have been analyzed. The proposed modulator is compared with other graphene-based modulators, and the results show that it is filled without dielectric spacer. There are some excellent performances, such as an extinction ratio 7 dB of y-polarization mode,3-dB modulation bandwidth of 70 GHz with small footprint of 205 μm, and a consumption of energy per bit 59 pJ/bit.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61274046,61474111 and 61321063the National High-Technology Research and Development Program of China under Grant No 2013AA014202
文摘We report the simulation and experimental results of 1.3-μm InGaAsP/InP multiple quantum well (MQW) electro-absorption modulators (EAMs). In this work, the quantum confined Stark effect of the EAM is system- atically analyzed through the finite element method. An optimized structure of the 1.3-μm InGaAsP/InP QW EAM is proposed for applications in 100 G ethernet. Then 1.3-μm InGaAsP/InP EAMs with f-3dB bandwidth of over 20 GHz and extinction ratio over 20 dB at 3 V bias voltage are demonstrated.
基金Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No.A735496)the National Natural Science Foundation of China (Grant No.61178018)the Ph.D. Funding Support Program of the Education Ministry of China (Grant No.20110185110007)
文摘A theoretical study on the red-shift of laser-induced electro-absorption is presented. It is found that laser-induced red-shift scales with the cube root of the pump laser intensity in the optical tunneling regime and has an obvious deviation from this scale in the multi-photon regime. Our results show that in the optical tunneling regime, the laser-induced red shift has the same law as that in the direct current (DC) approximation. Though the scales are the same in the optical tunneling regime, the physical pictures in the two cases are quite different. The electro-absorption in the DC case is a tunneling-assisted transition process, while the laser-induced electro-absorption is a mixed multi-photon process.
基金supported by National ScienceFoundation Programs(60536020,60723002)"973"State Key Basic Research Programs(2006CB302800,2006CB921106)
文摘An electro-absorption(EA)modulator is one of key components for optical fiber communications due to the high speed,small size,low voltage and integration ability with other semiconductor devices.A 40 Gb/s InGaAsP/InP multiplequantum-well(MQW)EA modulator monolithically integrated with a semiconductor optical amplifier(SOA)was fabricated for digital communications.The modulator capacitance was reduced to obtain 40 GHz bandwidth,and the SOA section helped reduce the insertion loss from 18 dB to 3 dB.InGaAlAs/InP MQW EA modulators have also been fabricated and characterized for analog optical fiber communications.A low driving voltage of 2.7 V and high spurious free dynamic range of 107 dB·Hz2/3 were estimated by static and dynamic measurements.
基金Project supported by the National Natural Science Foundation of China(Grant No.61505023)
文摘A theoretical study for femtosecond laser-induced ultrafast electro-absorption of bulk solids is presented.Our numerical results show that,in the case of low intensity of the pump laser where the interaction between the pump laser and solids is in the multi-photon regime,the energy band of solids can be approximately taken as a parabolic band and electro-absorption spectrums from the parabolic band and real band are nearly the same.While,in the case of high intensity where the interaction is in the tunneling regime,spectrums from the parabolic band and real band are quite different.The physical mechanism for the difference in the tunneling regime is found.We find that the non-parabolic parts of the real energy band and Bragger scattering of electrons near the first Brillouin zone boundaries,which are neglected in previous studies,strongly influence the electro-absorption spectrum in the tunneling regime.These two physical processes cause the difference of spectrums.Our theoretical results are in accordance with the experiment result.
基金This work was supported by the National Key Research and Development Program of China under Grant No.2018YFE0201900the National Natural Science Foundation of China under Grants No.61927821 and No.61875240the Joint Research Fund of Ministry of Education of China under Grant No.6141A02022436.
文摘Integrated electro-absorption-modulated distributed feedback laser diodes(EMLs)are attracting much interest in optical communications for the advantages of a compact structure,low power consumption,and high-speed modulation.In integrated EML,the microwave interaction between the distributed feedback laser diode(DFB-LD)and the electro-absorption modulator(EAM)has a nonnegligible influence on the modulation performance,especially at the high-frequency region.In this paper,integrated EML was investigated as a three-port network with two electrical inputs and a single optical output,where the scattering matrix of the integrated device was theoretically deduced and experimentally measured.Based on the theoretical model and the measured data,the microwave equivalent circuit model of the integrated device was established,from which the microwave interaction between DFB-LD and EAM was successfully extracted.The results reveal that the microwave interaction within integrated EML contains both the electrical isolation and optical coupling.The electrical isolation is bidirectional while the optical coupling is directional,which aggravates the microwave interaction in the direction from DFB-LD to EAM.
基金supported by the National Natural Science Foundation of China (Grant No 90401025)the National 973 project (Grant No 2006CB604901)
文摘This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption modulator based on a multimode waveguide structure. By simulation, both electroabsorption modulator and photodiode show excellent optical performances. The device can be fabricated with conventional photolithography, reactive ion etching, and chemical wet etching.
基金supported by the National Natural Science Foundation of China(Grant No.61077014)the National Basic Research Program of China(Grant No.2010CB327601)
文摘A theoretical model of the refractive index changes of the TE and TM modes in an electro-absorption modulator (EAM) is deduced. The photon absorption and refractive index changes are analyzed numerically. The influence of pump intensity on the phase difference between the TE and TM modes is studied. The polarization rotation effect is obtained in the EAM, and a novel all-optical fiber loop buffer is designed.