To address the challenges associated with existing separated zone oil production technologies,such as incompatibility with pump inspection operations,short effective working life,and poor communication reliability,an ...To address the challenges associated with existing separated zone oil production technologies,such as incompatibility with pump inspection operations,short effective working life,and poor communication reliability,an innovative electromagnetic coupling intelligent zonal oil production technology has been proposed.The core and accessory tools have been developed and applied in field tests.This technology employs a pipe string structure incorporation a release sub,which separates the production and allocation pipe strings.When the two strings are docked downhole,electromagnetic coupling enables close-range wireless transmission of electrical power and signals between the strings,powering multiple downhole intelligent production allocators(IPAs)and enabling two-way communication.Core tools adapted to the complex working conditions downhole were developed,including downhole electricity&signal transmission equipment based on electromagnetic coupling(EST),IPAs,and ground communication controllers(GCCs).Accessory tools,including large-diameter release sub anchor and cable-crossing packers,have also been technically finalized.Field tests conducted on ten wells in Daqing Oilfield demonstrated that the downhole docking of the two strings was convenient and reliable,and the EST worked stably.Real-time monitoring of flow rate,pressure and temperature in separate layers and regulation of zonal fluid production were also achieved.This technology has enhanced reservoir understanding and achieved practical production results of increased oil output with reduced water cut.展开更多
A program developed with COMSOL software integrates EAST four-strap antenna coupling with the double-stub Ferrite tuners(FT)impedance matching,obtaining physical quantities crucial for predicting the overall performan...A program developed with COMSOL software integrates EAST four-strap antenna coupling with the double-stub Ferrite tuners(FT)impedance matching,obtaining physical quantities crucial for predicting the overall performance of the ion cyclotron resonance heating(ICRH)antenna and matching system.These quantities encompass S-matrix,port complex impedance,reflection coefficients,electric field and voltage distribution,and optimal matching settings.In this study,we explore the relationship between S-matrix,reflection coefficients,port complex impedance,and frequency.Then,we analyze the impact of Faraday screens placement position and transparency,the distance from the Faraday screen(FS)to the current straps(CS),the relative distance between ports,and the characteristic impedance of the transmission line on the coupling characteristic impedance of the EAST ICRH system.Finally,we simulate the electric field distribution and voltage distribution of the EAST ICRH system for plasma heating with double-stub FT impedance matching.Using optimized parameters,the coupling power of the ICRH system can be approximately doubled.The results present herein may offer guidance for the design of high-power,long-pulse operation ICRH antenna systems.展开更多
Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic ...Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.展开更多
The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heati...The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications.展开更多
Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the...Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin-orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the. spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future.展开更多
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do...A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact.展开更多
We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico--electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-elec...We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico--electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-electrical coupling dynamical systems is given. Simultaneously, the condition of existence of the new conserved quantity of Mei symmetry for mechanico-electrical coupling dynamical systems is obtained. Finally, an example is given to illustrate the application of the results.展开更多
A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on e...A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.展开更多
The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(ar...The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.展开更多
Electromagnetic emission induced during concrete fracturing is of great significance to health monitoring of concrete structures.A coupled stress-electricity model is established by analyzing the interaction between s...Electromagnetic emission induced during concrete fracturing is of great significance to health monitoring of concrete structures.A coupled stress-electricity model is established by analyzing the interaction between stress and electricity during concrete fracturing.And based on this model,the electromagnetic radiation parameters are calculated.The theoretical calculation is well coincident with experimental results.This work provides theoretical support for concrete testing system.展开更多
The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed- loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing appro...The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed- loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.展开更多
The nonlinear thermo–magneto–mechanical magnetostrictive constitutive and the linear thermo–mechanical-electric piezoelectric constitutive are adopted in this paper. The bias magnetic field and ambient temperature ...The nonlinear thermo–magneto–mechanical magnetostrictive constitutive and the linear thermo–mechanical-electric piezoelectric constitutive are adopted in this paper. The bias magnetic field and ambient temperature are equivalent to a magnetic source and a thermo source, respectively. An equivalent circuit, which contains a magnetic source and a thermo source at the input, for the thermo–magneto–electric coupling effect in magnetoelectric(ME) laminates, is established. The theoretical models of the output voltage and static ME coefficient for ME laminates can be derived from this equivalent circuit model. The predicted static ME coefficient versus temperature curves are in excellent agreement with the experimental data available both qualitatively and quantitatively. It confirms the validity of the proposed model. Then the models are adopted to predict variations in the output voltages and ME coefficients in the laminates under different ambient temperatures, bias magnetic fields, and the volume ratios of magnetostrictive phases. This shows that the output voltage increases with both increasing temperature and increasing volume ratio of magnetostrictive phases; the ME coefficient decreases with increasing temperature; the ME coefficient shows an initial sharp increase and then decreases slowly with the increase in the bias magnetic field, and there is an optimum volume ratio of magnetostrictive phases that maximize the ME coefficient.This paper can not only provide a new idea for the study of the thermo–magneto–electric coupling characteristics of ME laminates, but also provide a theoretical basis for the design and application of ME laminates, operating under different sensors.展开更多
We study theoretically the influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin-orbit coupling. We show that...We study theoretically the influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin-orbit coupling. We show that, after such an influence is taken into account, the static intrinsic spin-Hall effect can be stabilized in a disordered Rashba twodimensional electron gas, and the static intrinsic spin-Hall conductivity shall exhibit some interesting characteristics as conceived in some original theoretical proposals.展开更多
The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling we...The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.展开更多
During the hot summer season,using electricity systems increases the local anthropogenic heat emission,further increasing the temperature.Regarding anthropogenic heat sources,electric energy consumption,heat generatio...During the hot summer season,using electricity systems increases the local anthropogenic heat emission,further increasing the temperature.Regarding anthropogenic heat sources,electric energy consumption,heat generation,indoor and outdoor heat transfer,and exchange in buildings play a critical role in the change in the urban thermal environment.Therefore,the Weather Research and Forecasting(WRF)Model was applied in this study to investigate the heat generation from an indoor electricity system and its influence on the outdoor thermal environment.Through the building effect parameterization(BEP)of a multistorey urban canopy scheme,a building energy model(BEM)to increase the influence of indoor air conditioning on the electricity consumption system was proposed.In other words,the BEP+BEM urban canopy parameterization scheme was set.High temperatures and a summer heat wave were simulated as the background weather.The results show that using the BEP+BEM parameterization scheme of indoor and outdoor energy exchange in the WRF model can better simulate the air temperature near the surface layer on a sunny summer.During the day,the turning on the air conditioning and other electrical systems have no obvious effect on the air temperature near the surface layer in the city,whereas at night,the air temperature generally increases by 0.6℃,especially in densely populated areas,with a maximum temperature rise of approximately 1.2℃from 22:00 to 23:00.When the indoor air conditioning target temperature is adjusted to 25-27℃,the total energy release of the air conditioning system is reduced by 12.66%,and the temperature drops the most from 13:00 to 16:00,with an average of approximately 1℃.Further,the denser the building is,the greater the temperature drop.展开更多
The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and nu...The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and numerical calculations.It is found that the longitudinal magnetic field can affect the heating by changing the level of the pressure heating along the longitudinal direction and that of the Ohmic heating along the direction which is perpendicular to both driving electric field and the applied transverse magnetic field,and a continuously increased longitudinal magnetic field can induce pressure heating to become dominant.Moreover,the electron temperature as well as proportion of some low energy electrons will increase if a small longitudinal magnetic field is introduced,which is attributed to the increased average electron energy.We believe that the research will provide guidance for optimizing the magnetic field configuration of some discharge systems having both transverse and longitudinal magnetic field.展开更多
This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters.It derives the quantitative relationship between the coupling coefficients(electric and magnetic coupling,i.e.,EC an...This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters.It derives the quantitative relationship between the coupling coefficients(electric and magnetic coupling,i.e.,EC and MC)and the linear coefficients of frequencydependent coupling for the first time.Different from the parameter extraction technique using the bandpass circuit model,the proposed approach explicitly relatesEC and MC to the coupling matrix model.This paper provides a general theoretic framework for computer-aided design and tuning of a mixed electric and magnetic coupling filter based on coupling matrices.An example of a 7th-order coaxial combline filter design is given in the paper,verifying the practical value of the approach.展开更多
A field method for integrating the equations of motion for mechanico-electrical coupling dynamical systems is studied. Two examples in mechanico-electrical engineering are given to illustrate this method.
Based on nine necessary basic assumptions for THM coupling model,this research comprehensively applied the theories of elastic mechanics,seepage mechanics and heat transfer,and established a real three-field and two-w...Based on nine necessary basic assumptions for THM coupling model,this research comprehensively applied the theories of elastic mechanics,seepage mechanics and heat transfer,and established a real three-field and two-way coupled mathematical model to reveal the connections among seepage field,deformation field and temperature field within the system of methane-containing coal.In comparison between numerical and analytical solutions,the coupling modeling for THM of methane-containing coal was proved to be correct by model application in the physical simulation experiment of coal and gas outburst.The model established in this paper was the improvement of traditional seepage theory of methane-containing coal and fluid-solid coupled model theory,which can be widely used in prevention of coal and gas outburst as well as exploitation of coal bed methane.展开更多
Several types of coupling methods for resolving aerothermoelastic problems associated with hypersonic wings are summarized,and the appropriate coupling methods for engineering calculations are selected.Then,the calcul...Several types of coupling methods for resolving aerothermoelastic problems associated with hypersonic wings are summarized,and the appropriate coupling methods for engineering calculations are selected.Then,the calculation and analysis methods for the subdisciplines in this field are introduced,and the time step issue is discussed.A two-way-coupling rapid static aerothermoelastic method for analyzing hypersonic wings is proposed.This method considers thermal effects and is used to conduct an aerothermoelastic response analysis for a hypersonic wing.In addition,the aerodynamic force,heat flux,structural deformation and temperature field are obtained.The following three conclusions are drawn.First,the heating effect has a significant impact on the static aeroelastic response of hypersonic wings;therefore,thermal protection shields are essential.Second,the application of thermal protection shields reduces the differences in the calculation results between the one-and two-way-coupling methods.Third,hypersonic wings exhibit large thermal deformation under high-temperature environments,and in certain cases,the thermal deformation is even larger than the deformation caused by aerodynamic force.展开更多
基金Supported by the National Natural Science Foundation of China(52374067)PetroChina Scientific Research and Technology Development Project(2021ZG12)PetroChina Technology Project(2023ZZ09).
文摘To address the challenges associated with existing separated zone oil production technologies,such as incompatibility with pump inspection operations,short effective working life,and poor communication reliability,an innovative electromagnetic coupling intelligent zonal oil production technology has been proposed.The core and accessory tools have been developed and applied in field tests.This technology employs a pipe string structure incorporation a release sub,which separates the production and allocation pipe strings.When the two strings are docked downhole,electromagnetic coupling enables close-range wireless transmission of electrical power and signals between the strings,powering multiple downhole intelligent production allocators(IPAs)and enabling two-way communication.Core tools adapted to the complex working conditions downhole were developed,including downhole electricity&signal transmission equipment based on electromagnetic coupling(EST),IPAs,and ground communication controllers(GCCs).Accessory tools,including large-diameter release sub anchor and cable-crossing packers,have also been technically finalized.Field tests conducted on ten wells in Daqing Oilfield demonstrated that the downhole docking of the two strings was convenient and reliable,and the EST worked stably.Real-time monitoring of flow rate,pressure and temperature in separate layers and regulation of zonal fluid production were also achieved.This technology has enhanced reservoir understanding and achieved practical production results of increased oil output with reduced water cut.
基金supported by National Magnetic Confinement Fusion Energy Development Research Project(Nos.2022YFE03070003 and 2019YFE03070000)Natural Science Foundation of Hunan Province(No.2020JJ4515)+6 种基金Key Projects of Hunan Provincial Department of Education(No.20A432)the Government Sponsored Study Abroad Program of the Chinese Scholarship Council(CSC)(No.202108430056)Anhui Provincial Natural Science Foundation(No.2308085MA23)IAEA Coordinated Research Project F43026(No.26480)the National Key Research&Development Program of China(No.2018YFE0303103)National Natural Science Foundation of China(Nos.11875287 and 12275314)Anhui Provincial Key Research&Development Project(No.205258180096)。
文摘A program developed with COMSOL software integrates EAST four-strap antenna coupling with the double-stub Ferrite tuners(FT)impedance matching,obtaining physical quantities crucial for predicting the overall performance of the ion cyclotron resonance heating(ICRH)antenna and matching system.These quantities encompass S-matrix,port complex impedance,reflection coefficients,electric field and voltage distribution,and optimal matching settings.In this study,we explore the relationship between S-matrix,reflection coefficients,port complex impedance,and frequency.Then,we analyze the impact of Faraday screens placement position and transparency,the distance from the Faraday screen(FS)to the current straps(CS),the relative distance between ports,and the characteristic impedance of the transmission line on the coupling characteristic impedance of the EAST ICRH system.Finally,we simulate the electric field distribution and voltage distribution of the EAST ICRH system for plasma heating with double-stub FT impedance matching.Using optimized parameters,the coupling power of the ICRH system can be approximately doubled.The results present herein may offer guidance for the design of high-power,long-pulse operation ICRH antenna systems.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 62171312 and 61771330)the Tianjin Municipal Education Commission Scientific Research Project (Grant No. 2020KJ114)。
文摘Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB1600200in part by the Shaanxi Province Postdoctoral Research Project under grant 2023BSHEDZZ223+3 种基金in part by the Fundamental Research Funds for the Central Universities,CHD,under grant 300102383101in part by the Shaanxi Province Qinchuangyuan High-Level Innovation and Entrepreneurship Talent Project under grant QCYRCXM-2023-112the Key Research and Development Program of Shaanxi Province under grant 2024GX-YBXM-442in part by the National Natural Science Foundation of China under grand 62373224.
文摘The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications.
文摘Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin-orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the. spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future.
基金National Natural Science Foundation of China (21878102)
文摘A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact.
基金supported by the National Natural Science Foundation of China (Grant No.11072218)
文摘We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico--electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-electrical coupling dynamical systems is given. Simultaneously, the condition of existence of the new conserved quantity of Mei symmetry for mechanico-electrical coupling dynamical systems is obtained. Finally, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.
基金supported by the Talent Fund of Beijing Jiaotong University(No,2023XKRC015)the National Natural Science Foundation of China(Nos.52172081,52073010 and 52373259).
文摘The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.
基金supported by the National Natural Science Fundation of China(No.51277101)
文摘Electromagnetic emission induced during concrete fracturing is of great significance to health monitoring of concrete structures.A coupled stress-electricity model is established by analyzing the interaction between stress and electricity during concrete fracturing.And based on this model,the electromagnetic radiation parameters are calculated.The theoretical calculation is well coincident with experimental results.This work provides theoretical support for concrete testing system.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2007AA04Z436)
文摘The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed- loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172285 and 11472259)the Natural Science Foundation of Zhejiang Province,China(Grant No.LR13A020002)
文摘The nonlinear thermo–magneto–mechanical magnetostrictive constitutive and the linear thermo–mechanical-electric piezoelectric constitutive are adopted in this paper. The bias magnetic field and ambient temperature are equivalent to a magnetic source and a thermo source, respectively. An equivalent circuit, which contains a magnetic source and a thermo source at the input, for the thermo–magneto–electric coupling effect in magnetoelectric(ME) laminates, is established. The theoretical models of the output voltage and static ME coefficient for ME laminates can be derived from this equivalent circuit model. The predicted static ME coefficient versus temperature curves are in excellent agreement with the experimental data available both qualitatively and quantitatively. It confirms the validity of the proposed model. Then the models are adopted to predict variations in the output voltages and ME coefficients in the laminates under different ambient temperatures, bias magnetic fields, and the volume ratios of magnetostrictive phases. This shows that the output voltage increases with both increasing temperature and increasing volume ratio of magnetostrictive phases; the ME coefficient decreases with increasing temperature; the ME coefficient shows an initial sharp increase and then decreases slowly with the increase in the bias magnetic field, and there is an optimum volume ratio of magnetostrictive phases that maximize the ME coefficient.This paper can not only provide a new idea for the study of the thermo–magneto–electric coupling characteristics of ME laminates, but also provide a theoretical basis for the design and application of ME laminates, operating under different sensors.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874049)the State Key Program for Basic Research of China (Grant No. 2007CB925204)the Natural Science Foundation of Guangdong Province of China (GrantNo. 07005834)
文摘We study theoretically the influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin-orbit coupling. We show that, after such an influence is taken into account, the static intrinsic spin-Hall effect can be stabilized in a disordered Rashba twodimensional electron gas, and the static intrinsic spin-Hall conductivity shall exhibit some interesting characteristics as conceived in some original theoretical proposals.
基金supported by the National Natural Science Foundation of China (Grant No.10874049)
文摘The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.
基金supported by Incubation Project of State Grid Jiangsu Electric Power Company“Research and application of key technology of intelligent forecasting and warning for electric power meteorological public service platform”(JF2021045).
文摘During the hot summer season,using electricity systems increases the local anthropogenic heat emission,further increasing the temperature.Regarding anthropogenic heat sources,electric energy consumption,heat generation,indoor and outdoor heat transfer,and exchange in buildings play a critical role in the change in the urban thermal environment.Therefore,the Weather Research and Forecasting(WRF)Model was applied in this study to investigate the heat generation from an indoor electricity system and its influence on the outdoor thermal environment.Through the building effect parameterization(BEP)of a multistorey urban canopy scheme,a building energy model(BEM)to increase the influence of indoor air conditioning on the electricity consumption system was proposed.In other words,the BEP+BEM urban canopy parameterization scheme was set.High temperatures and a summer heat wave were simulated as the background weather.The results show that using the BEP+BEM parameterization scheme of indoor and outdoor energy exchange in the WRF model can better simulate the air temperature near the surface layer on a sunny summer.During the day,the turning on the air conditioning and other electrical systems have no obvious effect on the air temperature near the surface layer in the city,whereas at night,the air temperature generally increases by 0.6℃,especially in densely populated areas,with a maximum temperature rise of approximately 1.2℃from 22:00 to 23:00.When the indoor air conditioning target temperature is adjusted to 25-27℃,the total energy release of the air conditioning system is reduced by 12.66%,and the temperature drops the most from 13:00 to 16:00,with an average of approximately 1℃.Further,the denser the building is,the greater the temperature drop.
基金supported by National Natural Science Foundation of China (Nos. 11975163 and 12175160)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and numerical calculations.It is found that the longitudinal magnetic field can affect the heating by changing the level of the pressure heating along the longitudinal direction and that of the Ohmic heating along the direction which is perpendicular to both driving electric field and the applied transverse magnetic field,and a continuously increased longitudinal magnetic field can induce pressure heating to become dominant.Moreover,the electron temperature as well as proportion of some low energy electrons will increase if a small longitudinal magnetic field is introduced,which is attributed to the increased average electron energy.We believe that the research will provide guidance for optimizing the magnetic field configuration of some discharge systems having both transverse and longitudinal magnetic field.
基金supported by the National Natural Science Foundation of China under Grant No.62001339.
文摘This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters.It derives the quantitative relationship between the coupling coefficients(electric and magnetic coupling,i.e.,EC and MC)and the linear coefficients of frequencydependent coupling for the first time.Different from the parameter extraction technique using the bandpass circuit model,the proposed approach explicitly relatesEC and MC to the coupling matrix model.This paper provides a general theoretic framework for computer-aided design and tuning of a mixed electric and magnetic coupling filter based on coupling matrices.An example of a 7th-order coaxial combline filter design is given in the paper,verifying the practical value of the approach.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10672143 and 60575055)the Natural Science Foundation of Henan Province, China (Grant No 0511022200)
文摘A field method for integrating the equations of motion for mechanico-electrical coupling dynamical systems is studied. Two examples in mechanico-electrical engineering are given to illustrate this method.
基金supported in part by the State Key Basic Research Program of China(No.2011CB201203)the General Project of the National Natural Science Foundation of China(No.50974141)+1 种基金the Key Project of the National Natural Science Foundation of China(No.50534080)the Key Special Subjects National Science and Technology of China(No.2011ZX05034-004)
文摘Based on nine necessary basic assumptions for THM coupling model,this research comprehensively applied the theories of elastic mechanics,seepage mechanics and heat transfer,and established a real three-field and two-way coupled mathematical model to reveal the connections among seepage field,deformation field and temperature field within the system of methane-containing coal.In comparison between numerical and analytical solutions,the coupling modeling for THM of methane-containing coal was proved to be correct by model application in the physical simulation experiment of coal and gas outburst.The model established in this paper was the improvement of traditional seepage theory of methane-containing coal and fluid-solid coupled model theory,which can be widely used in prevention of coal and gas outburst as well as exploitation of coal bed methane.
基金supported partly by the National Natural Science Foundation of China (Nos.11302011, 11402013,11372023,11672018)the National Key Research and Development Program (No.2016YFB0200703)the Fundamental Research Funds for the Central Universities(No.YWF-14-HKXY-006)
文摘Several types of coupling methods for resolving aerothermoelastic problems associated with hypersonic wings are summarized,and the appropriate coupling methods for engineering calculations are selected.Then,the calculation and analysis methods for the subdisciplines in this field are introduced,and the time step issue is discussed.A two-way-coupling rapid static aerothermoelastic method for analyzing hypersonic wings is proposed.This method considers thermal effects and is used to conduct an aerothermoelastic response analysis for a hypersonic wing.In addition,the aerodynamic force,heat flux,structural deformation and temperature field are obtained.The following three conclusions are drawn.First,the heating effect has a significant impact on the static aeroelastic response of hypersonic wings;therefore,thermal protection shields are essential.Second,the application of thermal protection shields reduces the differences in the calculation results between the one-and two-way-coupling methods.Third,hypersonic wings exhibit large thermal deformation under high-temperature environments,and in certain cases,the thermal deformation is even larger than the deformation caused by aerodynamic force.