A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved b...A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved by the invariant eigenvalues and the gradually varying eigenvectors. A sufficient stability criterion is given by constructing a series of Lyapunov functions based on the selected discrete characteristic points. An important contribution is that it provides a simple and feasible approach for the design of gain-scheduled controllers for linear time-varying systems, which can guarantee both the global stability and the desired closed-loop performance of the resulted system. The method is applied to the design of a BTT missile autopilot and the simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.展开更多
A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure ass...A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.展开更多
基金supported by the National Natural Science Foundation of China (60474015)Program for Changjiang Scholars and Innovative Research Team in University
文摘A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved by the invariant eigenvalues and the gradually varying eigenvectors. A sufficient stability criterion is given by constructing a series of Lyapunov functions based on the selected discrete characteristic points. An important contribution is that it provides a simple and feasible approach for the design of gain-scheduled controllers for linear time-varying systems, which can guarantee both the global stability and the desired closed-loop performance of the resulted system. The method is applied to the design of a BTT missile autopilot and the simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.
文摘A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.