期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Real-Time Monitoring Method for Cow Rumination Behavior Based on Edge Computing and Improved MobileNet v3
1
作者 ZHANG Yu LI Xiangting +4 位作者 SUN Yalin XUE Aidi ZHANG Yi JIANG Hailong SHEN Weizheng 《智慧农业(中英文)》 CSCD 2024年第4期29-41,共13页
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo... [Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings. 展开更多
关键词 cow rumination behavior real-time monitoring edge computing improved MobileNet v3 edge intelligence model Bi-LSTM
在线阅读 下载PDF
Optimization and Deployment of Memory-Intensive Operations in Deep Learning Model on Edge
2
作者 Peng XU Jianxin ZHAO Chi Harold LIU 《计算机科学》 CSCD 北大核心 2023年第2期3-12,共10页
As a large amount of data is increasingly generated from edge devices,such as smart homes,mobile phones,and wearable devices,it becomes crucial for many applications to deploy machine learning modes across edge device... As a large amount of data is increasingly generated from edge devices,such as smart homes,mobile phones,and wearable devices,it becomes crucial for many applications to deploy machine learning modes across edge devices.The execution speed of the deployed model is a key element to ensure service quality.Considering a highly heterogeneous edge deployment scenario,deep learning compiling is a novel approach that aims to solve this problem.It defines models using certain DSLs and generates efficient code implementations on different hardware devices.However,there are still two aspects that are not yet thoroughly investigated yet.The first is the optimization of memory-intensive operations,and the second problem is the heterogeneity of the deployment target.To that end,in this work,we propose a system solution that optimizes memory-intensive operation,optimizes the subgraph distribution,and enables the compiling and deployment of DNN models on multiple targets.The evaluation results show the performance of our proposed system. 展开更多
关键词 Memory optimization Deep compiler Computation optimization Model deployment edge computing
在线阅读 下载PDF
基于高空平台的边缘计算卸载:网络、算法和展望
3
作者 孙恩昌 李梦思 +2 位作者 何若兰 张卉 张延华 《北京工业大学学报》 CAS CSCD 北大核心 2024年第3期348-361,共14页
高空平台(high altitude platform,HAP)技术与多接入边缘计算(multi-access edge computing,MEC)技术的结合将MEC服务器部署区域由地面扩展到空中,打破传统地面MEC网络的局限性,为用户提供无处不在的计算卸载服务。针对基于HAP的MEC卸... 高空平台(high altitude platform,HAP)技术与多接入边缘计算(multi-access edge computing,MEC)技术的结合将MEC服务器部署区域由地面扩展到空中,打破传统地面MEC网络的局限性,为用户提供无处不在的计算卸载服务。针对基于HAP的MEC卸载研究进行综述,首先,从HAP计算节点的优势、网络组成部分、网络结构、主要挑战及其应对技术4个方面分析基于HAP的MEC网络;其次,分别从图论、博弈论、机器学习、联邦学习等理论的角度对基于HAP的MEC卸载算法进行横向分析和纵向对比;最后,指出基于HAP的MEC卸载技术目前存在的问题,并对该技术的未来研究方向进行展望。 展开更多
关键词 高空平台(high altitude platform HAP) 多接入边缘计算(multi-access edge computing MEC) 计算卸载 图论 博弈论 机器学习
在线阅读 下载PDF
基于深度强化学习的IRS辅助NOMA-MEC通信资源分配优化 被引量:1
4
作者 方娟 刘珍珍 +1 位作者 陈思琪 李硕朋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第8期930-938,共9页
为了解决无法与边缘服务器建立直连通信链路的盲区边缘用户卸载任务的问题,设计了一个基于深度强化学习(deep reinforcement learning, DRL)的智能反射面(intelligent reflecting surface, IRS)辅助非正交多址(non-orthogonal multiple ... 为了解决无法与边缘服务器建立直连通信链路的盲区边缘用户卸载任务的问题,设计了一个基于深度强化学习(deep reinforcement learning, DRL)的智能反射面(intelligent reflecting surface, IRS)辅助非正交多址(non-orthogonal multiple access, NOMA)通信的资源分配优化算法,以获得由系统和速率和能源效率(energy efficiency, EE)加权的最大系统收益,从而实现绿色高效通信。通过深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法联合优化传输功率分配和IRS的反射相移矩阵。仿真结果表明,使用DDPG算法处理移动边缘计算(mobile edge computing, MEC)的通信资源分配优于其他几种对比实验算法。 展开更多
关键词 非正交多址(non-orthogonal multiple access NOMA) 智能反射面(intelligent reflecting surface IRS) 深度确定性策略梯度(deep deterministic policy gradient DDPG)算法 移动边缘计算(mobile edge computing MEC) 能源效率(energy efficiency EE) 系统收益
在线阅读 下载PDF
MEC和区块链赋能无人机辅助的物联网资源优化 被引量:2
5
作者 张延华 赵铖泽 +3 位作者 李萌 司鹏搏 孙恩昌 杨睿哲 《北京工业大学学报》 CAS CSCD 北大核心 2022年第9期935-943,共9页
针对物联网设备部署在较偏远地区而导致的传输链路易受损或传输覆盖范围有限等问题,在此场景中引入无人机和移动边缘计算(mobile edge computing, MEC)技术,有效改善物联网设备能源供给,优化计算资源,同时提升通信覆盖范围,减少不必要... 针对物联网设备部署在较偏远地区而导致的传输链路易受损或传输覆盖范围有限等问题,在此场景中引入无人机和移动边缘计算(mobile edge computing, MEC)技术,有效改善物联网设备能源供给,优化计算资源,同时提升通信覆盖范围,减少不必要的网络开销.另外,区块链技术的引入保证了数据计算卸载与交互过程中的安全性和可靠性,实现了数据共享.因此,面向无人机辅助的物联网系统提出一种融合MEC和区块链的资源分配决策方法,以实现MEC系统和区块链系统性能的最佳权衡为目标,综合考虑频谱资源和计算资源的分配,构建问题模型,并采用基于交替方向乘子(alternating direction method of multipliers, ADMM)法的分布式优化算法求解该优化问题.仿真结果表明,所提优化框架可以有效减少MEC系统的总能耗和区块链系统的计算时延.同时,所提方法具有良好的收敛性能,系统稳定性得到充分保证. 展开更多
关键词 资源优化 物联网 无人机 移动边缘计算(mobile edge computing MEC) 区块链 交替方向乘子法(alternating direction method of multipliers ADMM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部