[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo...[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.展开更多
As a large amount of data is increasingly generated from edge devices,such as smart homes,mobile phones,and wearable devices,it becomes crucial for many applications to deploy machine learning modes across edge device...As a large amount of data is increasingly generated from edge devices,such as smart homes,mobile phones,and wearable devices,it becomes crucial for many applications to deploy machine learning modes across edge devices.The execution speed of the deployed model is a key element to ensure service quality.Considering a highly heterogeneous edge deployment scenario,deep learning compiling is a novel approach that aims to solve this problem.It defines models using certain DSLs and generates efficient code implementations on different hardware devices.However,there are still two aspects that are not yet thoroughly investigated yet.The first is the optimization of memory-intensive operations,and the second problem is the heterogeneity of the deployment target.To that end,in this work,we propose a system solution that optimizes memory-intensive operation,optimizes the subgraph distribution,and enables the compiling and deployment of DNN models on multiple targets.The evaluation results show the performance of our proposed system.展开更多
文摘[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.
基金supported by the National Natural Science Foundation of China(U21A20519)。
文摘As a large amount of data is increasingly generated from edge devices,such as smart homes,mobile phones,and wearable devices,it becomes crucial for many applications to deploy machine learning modes across edge devices.The execution speed of the deployed model is a key element to ensure service quality.Considering a highly heterogeneous edge deployment scenario,deep learning compiling is a novel approach that aims to solve this problem.It defines models using certain DSLs and generates efficient code implementations on different hardware devices.However,there are still two aspects that are not yet thoroughly investigated yet.The first is the optimization of memory-intensive operations,and the second problem is the heterogeneity of the deployment target.To that end,in this work,we propose a system solution that optimizes memory-intensive operation,optimizes the subgraph distribution,and enables the compiling and deployment of DNN models on multiple targets.The evaluation results show the performance of our proposed system.
文摘针对物联网设备部署在较偏远地区而导致的传输链路易受损或传输覆盖范围有限等问题,在此场景中引入无人机和移动边缘计算(mobile edge computing, MEC)技术,有效改善物联网设备能源供给,优化计算资源,同时提升通信覆盖范围,减少不必要的网络开销.另外,区块链技术的引入保证了数据计算卸载与交互过程中的安全性和可靠性,实现了数据共享.因此,面向无人机辅助的物联网系统提出一种融合MEC和区块链的资源分配决策方法,以实现MEC系统和区块链系统性能的最佳权衡为目标,综合考虑频谱资源和计算资源的分配,构建问题模型,并采用基于交替方向乘子(alternating direction method of multipliers, ADMM)法的分布式优化算法求解该优化问题.仿真结果表明,所提优化框架可以有效减少MEC系统的总能耗和区块链系统的计算时延.同时,所提方法具有良好的收敛性能,系统稳定性得到充分保证.