Rod-airfoil interaction noise becomes a major issue in some aeronautical applications.The design of four wavy leading edges(WLEs)with varying wavelengths,bioinspired by the tubercles on humpback whales’flippers,aims ...Rod-airfoil interaction noise becomes a major issue in some aeronautical applications.The design of four wavy leading edges(WLEs)with varying wavelengths,bioinspired by the tubercles on humpback whales’flippers,aims to mitigate far-field noise.Among these cases,a reduction in the wavelength is found to be advantageous for noise suppression,with the smallest wavelength case achieving a maximum noise reduction of 1.9 dB.Furthermore,the noise radiation induced by WLEs is suppressed mainly at medium frequencies.The theory of multiprocess aeroacoustics is applied to reveal their underlying mechanisms.The dominant factor is the source cutoff effect,which significantly decreases the source strength on hills.Additionally,spanwise decoherence with phase interference serves as another crucial mechanism,particularly for reducing mid-frequency noise.展开更多
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t...Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.展开更多
针对区块链边缘节点的部署环境开放、安全措施薄弱、易受到安全攻击,以及计算和网络资源不足等问题,提出一种基于可信执行环境(TEE)的区块链安全架构P-Dledger。该架构通过构建两阶段的信任链,在满足软件便捷迭代的基础上,确保加载部件...针对区块链边缘节点的部署环境开放、安全措施薄弱、易受到安全攻击,以及计算和网络资源不足等问题,提出一种基于可信执行环境(TEE)的区块链安全架构P-Dledger。该架构通过构建两阶段的信任链,在满足软件便捷迭代的基础上,确保加载部件的可信;通过实现智能合约可信执行框架以及基于串行外设接口或非门存储器(SPI NOR Flash)的数据可信存储,保证智能合约的可信计算与数据的可信存储;同时,为共识提案赋予单调递增的唯一标识,限制拜占庭节点的行为。实验与分析结果表明:所提架构确保了加载主体、账本数据与执行过程的安全可信;当网络延时大于60 ms或节点数大于8时,P-Dledger比采用拜占庭容错(PBFT)算法的区块链系统的吞吐量更高,且随着网络延时与节点数的增加,P-Dledger性能表现更稳定。展开更多
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo...[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the netw...With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.展开更多
基金supported by the National Natural Science Foundation of China(12322210,12172351,92252202,and 12388101)the Fundamental Research Funds for the Central Universities.
文摘Rod-airfoil interaction noise becomes a major issue in some aeronautical applications.The design of four wavy leading edges(WLEs)with varying wavelengths,bioinspired by the tubercles on humpback whales’flippers,aims to mitigate far-field noise.Among these cases,a reduction in the wavelength is found to be advantageous for noise suppression,with the smallest wavelength case achieving a maximum noise reduction of 1.9 dB.Furthermore,the noise radiation induced by WLEs is suppressed mainly at medium frequencies.The theory of multiprocess aeroacoustics is applied to reveal their underlying mechanisms.The dominant factor is the source cutoff effect,which significantly decreases the source strength on hills.Additionally,spanwise decoherence with phase interference serves as another crucial mechanism,particularly for reducing mid-frequency noise.
基金supported by the National Natural Science Foundation of China(62276055).
文摘Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.
文摘针对区块链边缘节点的部署环境开放、安全措施薄弱、易受到安全攻击,以及计算和网络资源不足等问题,提出一种基于可信执行环境(TEE)的区块链安全架构P-Dledger。该架构通过构建两阶段的信任链,在满足软件便捷迭代的基础上,确保加载部件的可信;通过实现智能合约可信执行框架以及基于串行外设接口或非门存储器(SPI NOR Flash)的数据可信存储,保证智能合约的可信计算与数据的可信存储;同时,为共识提案赋予单调递增的唯一标识,限制拜占庭节点的行为。实验与分析结果表明:所提架构确保了加载主体、账本数据与执行过程的安全可信;当网络延时大于60 ms或节点数大于8时,P-Dledger比采用拜占庭容错(PBFT)算法的区块链系统的吞吐量更高,且随着网络延时与节点数的增加,P-Dledger性能表现更稳定。
文摘[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.
基金This work was supported by the Key Research and Development(R&D)Plan of Heilongjiang Province of China(JD22A001).
文摘With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.