基于深度学习的目标检测算法已广泛应用,与此同时最近的一系列研究表明现有的目标检测算法容易受到对抗性攻击的威胁,造成检测器失效.然而,聚焦于自动驾驶场景下对抗攻击的迁移性研究较少,并且鲜有研究关注该场景下对抗攻击的隐蔽性.针...基于深度学习的目标检测算法已广泛应用,与此同时最近的一系列研究表明现有的目标检测算法容易受到对抗性攻击的威胁,造成检测器失效.然而,聚焦于自动驾驶场景下对抗攻击的迁移性研究较少,并且鲜有研究关注该场景下对抗攻击的隐蔽性.针对现有研究的不足,将对抗样本的优化类比于机器学习模型的训练过程,设计了提升攻击迁移性的算法模块.并且通过风格迁移的方式和神经渲染(neural rendering)技术,提出并实现了迁移隐蔽攻击(transferable and stealthy attack,TSA)方法.具体来说,首先将对抗样本进行重复拼接,结合掩膜生成最终纹理,并将其应用于整个车辆表面.为了模拟真实的环境条件,使用物理变换函数将渲染的伪装车辆嵌入逼真的场景中.最后,通过设计的损失函数优化对抗样本.仿真实验表明,TSA方法在攻击迁移能力上超过了现有方法,并在外观上具有一定的隐蔽性.此外,通过物理域实验进一步证明了TSA方法在现实世界中能够保持有效的攻击性能.展开更多
电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先...电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。展开更多
针对现有低功耗蓝牙(BLE)欺骗攻击检测技术准确率低的问题,提出了一种基于异常指纹的BLE欺骗攻击检测技术,将攻击者的射频指纹作为异常数据,把欺骗攻击检测建模为异常检测问题;设计了一种基于深度支持向量描述(Deep Support Vector Data...针对现有低功耗蓝牙(BLE)欺骗攻击检测技术准确率低的问题,提出了一种基于异常指纹的BLE欺骗攻击检测技术,将攻击者的射频指纹作为异常数据,把欺骗攻击检测建模为异常检测问题;设计了一种基于深度支持向量描述(Deep Support Vector Data Description,DeepSVDD)的异常指纹检测模型——RFFAD_DeepSVDD,并使用残差单元构建网络模型,有效缓解了机器学习异常检测算法非线性特征提取不足的问题。采用预训练自编码器获取最优初始化参数,极大增强了模型边界决策能力。在异常检测实验中,该模型准确率达到95.47%,相比基于机器学习的异常检测模型平均提升8.92%;在欺骗攻击检测实验中,该方法相比现有欺骗攻击检测技术在攻击节点运动与静止状态下均表现出更好的性能,能够准确检测并识别出中间人攻击、冒充攻击、重连接欺骗攻击3种欺骗攻击。展开更多
文摘基于深度学习的目标检测算法已广泛应用,与此同时最近的一系列研究表明现有的目标检测算法容易受到对抗性攻击的威胁,造成检测器失效.然而,聚焦于自动驾驶场景下对抗攻击的迁移性研究较少,并且鲜有研究关注该场景下对抗攻击的隐蔽性.针对现有研究的不足,将对抗样本的优化类比于机器学习模型的训练过程,设计了提升攻击迁移性的算法模块.并且通过风格迁移的方式和神经渲染(neural rendering)技术,提出并实现了迁移隐蔽攻击(transferable and stealthy attack,TSA)方法.具体来说,首先将对抗样本进行重复拼接,结合掩膜生成最终纹理,并将其应用于整个车辆表面.为了模拟真实的环境条件,使用物理变换函数将渲染的伪装车辆嵌入逼真的场景中.最后,通过设计的损失函数优化对抗样本.仿真实验表明,TSA方法在攻击迁移能力上超过了现有方法,并在外观上具有一定的隐蔽性.此外,通过物理域实验进一步证明了TSA方法在现实世界中能够保持有效的攻击性能.
文摘电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。
文摘针对现有低功耗蓝牙(BLE)欺骗攻击检测技术准确率低的问题,提出了一种基于异常指纹的BLE欺骗攻击检测技术,将攻击者的射频指纹作为异常数据,把欺骗攻击检测建模为异常检测问题;设计了一种基于深度支持向量描述(Deep Support Vector Data Description,DeepSVDD)的异常指纹检测模型——RFFAD_DeepSVDD,并使用残差单元构建网络模型,有效缓解了机器学习异常检测算法非线性特征提取不足的问题。采用预训练自编码器获取最优初始化参数,极大增强了模型边界决策能力。在异常检测实验中,该模型准确率达到95.47%,相比基于机器学习的异常检测模型平均提升8.92%;在欺骗攻击检测实验中,该方法相比现有欺骗攻击检测技术在攻击节点运动与静止状态下均表现出更好的性能,能够准确检测并识别出中间人攻击、冒充攻击、重连接欺骗攻击3种欺骗攻击。