期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于场因子分解的xDeepFM推荐模型
1
作者 李子杰 张姝 +2 位作者 欧阳昭相 王俊 吴迪 《应用科学学报》 CAS CSCD 北大核心 2024年第3期513-524,共12页
极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推... 极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推荐场景下的表现,提出一种基于场因子分解的xDeepFM改进模型。该模型通过场信息增强了特征的表达能力,并建立了多个交叉压缩网络以学习高阶组合特征。最后分析了用户场、项目场设定的合理性,并在3个不同规模的MovieLens系列数据集上通过受试者工作特征曲线下面积、对数似然损失指标进行性能评估,验证了该改进模型的有效性。 展开更多
关键词 推荐算法 极深因子分解机 场因子分解 深度学习
在线阅读 下载PDF
基于xDeepFM的铁路货物运输时间预测 被引量:4
2
作者 蒋哲远 葛承宇 +1 位作者 陈超 米希伟 《交通运输工程与信息学报》 2022年第1期39-46,97,共9页
铁路货物运输时间会影响物流交付、列车调度等,准确的铁路货物运输时间预测是合理制定运输组织方案的关键。货物列车的运营受很多复杂因素的耦合影响,而既有研究普遍缺乏对各因素特征交互的深入探索,为了探索铁路货物运输时间预测新的... 铁路货物运输时间会影响物流交付、列车调度等,准确的铁路货物运输时间预测是合理制定运输组织方案的关键。货物列车的运营受很多复杂因素的耦合影响,而既有研究普遍缺乏对各因素特征交互的深入探索,为了探索铁路货物运输时间预测新的特征融合机制、提高整体预测效果,本文创新性地将智能推荐算法领域的xDeepFM算法引入货运时间预测问题。基于该算法的因子分解机、深度学习等思想构建了货运时间预测模型,设计了数据预处理、特征映射及参数寻优模块,利用模型能自动高效学习复杂因素的显式和隐式高维特征交互关系来提升预测效果,为解决铁路货物运输时间预测问题提供了新思路。在案例研究中,本文选取2种经典机器学习模型(LSSVM、随机森林模型)和3种新颖深度学习模型(DNN、CNN、LSTM)作为对比模型。实验结果表明:本文所建的xDeepFM模型的预测误差MSE为0.4991,MAPE为3.473%,相较于对比模型,xDeepFM模型具有更高的预测准确度,适合运营环境复杂的货物运输预测问题,能够实现较好的预测效果。 展开更多
关键词 铁路运输 xdeepfm 深度学习 时间预测 神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部