随着微博用户的不断增加,微博网络已成为用户进行信息交流的平台.针对由于博文长度受限,传统的社区发现算法无法有效解决微博网络的稀疏性等问题,提出了DC-DTM(discovery community by dynamic topic model)算法.DC-DTM算法首先将微博...随着微博用户的不断增加,微博网络已成为用户进行信息交流的平台.针对由于博文长度受限,传统的社区发现算法无法有效解决微博网络的稀疏性等问题,提出了DC-DTM(discovery community by dynamic topic model)算法.DC-DTM算法首先将微博网络映射为有向加权网络,网络中边的方向反映节点之间的关注关系,利用所提出的DTM(dynamic topic model)计算出节点之间的语义相似度,并将其作为节点间连边的权重.DTM是一种微博主题模型.该模型不仅能够挖掘博客的主题分布,而且能够计算出某一主题中用户的影响力大小.其次,利用所提出的复杂度较低的标签传播算法WLPA(weighted lebel propagation)进行微博网络的社区发现.该算法的初始化阶段将影响力大的用户节点作为初始节点,标签按照节点的影响力从大到小进行传播,避免了传统标签传播算法逆流现象的发生,提高了标签传播算法的稳定性.真实数据上的实验结果表明,DTM模型能够很好地对微博进行主题挖掘,DC-DTM算法能够有效地挖掘出微博网络的社区.展开更多
话题跟踪是一项针对新闻话题进行相关信息识别、挖掘和自组织的研究课题,其关键问题之一是如何建立符合话题形态的统计模型.话题形态的研究涉及两个问题,其一是话题的结构特性,其二是话题变形.对比分析了现有词包式、层次树式和链式这3...话题跟踪是一项针对新闻话题进行相关信息识别、挖掘和自组织的研究课题,其关键问题之一是如何建立符合话题形态的统计模型.话题形态的研究涉及两个问题,其一是话题的结构特性,其二是话题变形.对比分析了现有词包式、层次树式和链式这3类主流话题模型的形态特征,尤其深入探讨了静态和动态话题模型拟合话题脉络的优势和劣势,并提出一种基于特征重叠比的核捕捉衰减评价策略,专门用于衡量静态和动态话题模型追踪话题发展趋势的能力.在此基础上,分别给出突发式增量式学习方法和时序事件链的更新算法,借以提高动态话题模型的核捕捉性能.实验基于国际标准评测语料TDT4,采用NIST(National Institute of Standards and Technology)提出的最小检测错误权衡系数评测法,并结合所提出的核捕捉衰减评价方法,对各类主要话题模型进行测试.实验结果显示,结构化的动态话题模型具有最佳的跟踪性能,且突发式增量式学习和时序事件链的更新算法分别给予动态话题模型0.4%和3.3%的性能改进.展开更多
文摘随着微博用户的不断增加,微博网络已成为用户进行信息交流的平台.针对由于博文长度受限,传统的社区发现算法无法有效解决微博网络的稀疏性等问题,提出了DC-DTM(discovery community by dynamic topic model)算法.DC-DTM算法首先将微博网络映射为有向加权网络,网络中边的方向反映节点之间的关注关系,利用所提出的DTM(dynamic topic model)计算出节点之间的语义相似度,并将其作为节点间连边的权重.DTM是一种微博主题模型.该模型不仅能够挖掘博客的主题分布,而且能够计算出某一主题中用户的影响力大小.其次,利用所提出的复杂度较低的标签传播算法WLPA(weighted lebel propagation)进行微博网络的社区发现.该算法的初始化阶段将影响力大的用户节点作为初始节点,标签按照节点的影响力从大到小进行传播,避免了传统标签传播算法逆流现象的发生,提高了标签传播算法的稳定性.真实数据上的实验结果表明,DTM模型能够很好地对微博进行主题挖掘,DC-DTM算法能够有效地挖掘出微博网络的社区.
文摘话题跟踪是一项针对新闻话题进行相关信息识别、挖掘和自组织的研究课题,其关键问题之一是如何建立符合话题形态的统计模型.话题形态的研究涉及两个问题,其一是话题的结构特性,其二是话题变形.对比分析了现有词包式、层次树式和链式这3类主流话题模型的形态特征,尤其深入探讨了静态和动态话题模型拟合话题脉络的优势和劣势,并提出一种基于特征重叠比的核捕捉衰减评价策略,专门用于衡量静态和动态话题模型追踪话题发展趋势的能力.在此基础上,分别给出突发式增量式学习方法和时序事件链的更新算法,借以提高动态话题模型的核捕捉性能.实验基于国际标准评测语料TDT4,采用NIST(National Institute of Standards and Technology)提出的最小检测错误权衡系数评测法,并结合所提出的核捕捉衰减评价方法,对各类主要话题模型进行测试.实验结果显示,结构化的动态话题模型具有最佳的跟踪性能,且突发式增量式学习和时序事件链的更新算法分别给予动态话题模型0.4%和3.3%的性能改进.